Ministry of Higher Education and Research Scientific Supervision and Evaluation Authority Quality Assurance and Academic Accreditation Department Department of International Academic Accreditation

Academic Program Description Form for Colleges 2021-2022

University name: Anbar University

College Name: Engineering

Scientific Department: Dams and Water resources Engineering

File filling date: 10/11/2021

Dr. Haitham Kamel Daoud

The Director of the Division

Quality Assurance and University

Performance

H.K. Daws

The Associate Dean for Scientific Affairs

Dr. Mohamed Abdel Ahmed

M. A. Ahmed

The Dean of the College

Dr. Amir Abdul Rahman Hilal

12/ 11 /2021

12/11 /2021

12/11 /2021

Director of Quality Assurance and University Performance Signature:

Date: 12/11/2021

Academic Program Description Form

Reviewing the performance of higher education institutions ((review of the academic program))

This description of the academic program provides a brief summary of the most important characteristics of the program and the learning outcomes expected of the students to achieve, demonstrating whether he/she has made maximum use of the available opportunities. It is accompanied by a description of each course within the program

1. The educational institution	University of Anbar
2. University Department/Center	College of Engineering
3. Academic Program	Dams and Water Resources Engineering
4. The name of the final certificate	Bachelor of Dams and Water Resources Engineering
5. The academic system	Semester
6. Accredited Accreditation Program	N/A
7. External influences	N/A
8. The date of preparing the description	10/11/2021

9. Academic Program Objectives:

- 1- Preparing graduates specialized in dams and water resources engineering who contribute to the development of the country.
- 2- Meeting the needs of multiple sectors in the field of dams and reservoirs with highly qualified staff.
- 3- Encouraging distinguished people in this field to work as teaching assistants in the department so that they can be faculty members in the future.
- 4- Graduates of the department have the ability to develop and hold senior positions.
- 5- Graduates of the department have the ability to pursue postgraduate studies to participate in academic work and scientific research.

10. Required learning outcomes and teaching, learning and evaluation methods

A. Knowledge and Understanding:

- 1. Knowledge in mathematics, science and engineering.
- 2. The ability to design and conduct experiments, as well as to analyze and interpret data.
- 3. Knowledge of contemporary issues.
- 4. Understand professional and ethical responsibilities.

B. Subject-specific skills:

- 1. The ability to work with a multidisciplinary team.
- 2. The ability to identify, formulate and solve engineering problems includes the ability to evaluate and synthesize information and develop alternative solutions.
- 3. The ability to express ideas clearly, prepare written reports, graphical reports, and make written and oral presentations.
- 4. The ability to use the necessary modern engineering techniques, skills, and tools.

11. Program Structure:

	,i aiii b					
		nd Unites		Course		
Weekly		ekly ho	ours	Code	Course Name	Level/Year
hours	Lec.	Tut.	Lab.	Code		
3	3	1	-	DWE1201	Calculus-1	
4	3	1	3	DWE1203	Physics -1	
4	3		3	DWE1205	Chemistry	First Year
3	2	1	3	DWE1302	Engineering Geology	1st Course
3	3		-	DWE1101	Arabic Language	
3	2	1	3	DWE1209	Computer Science	
20	16	4	12	Total	_	
3	3	1	-	DWE2211	Calculus-3	
3	3	1	-	DWE2304	Dynamics	G 1
3	3	1	-	DWE2311	Electric Circuits	Second Year
2	1	1	3	DWE2306	E2306 Engineering surveying I	
3	2	-	3	DWE2307	Technology Building Materials	1st Course
3	3	-	-	DWE2103	English Language-2	
17	15	4	6	Total		
3	2	1	3	DWE3214	Engineering Numerical Methods	
3	3	1	-	DWE3315	Hydraulic Machine]
3	2	1	3	DWE3313	Strength of materials	Third Year
2	2	1	-	DWE3317	Engineering Hydrology	1stCourse
2	2	1	-	DWE3314	Open Chanel	
3	2	2	3	DWE3316	Soil Mechanics I	
16	13	7	9	Total		
2	2	2	-	DWE4323	Introduction to reinforced	
2	2		1	DWE4323	concrete structures	
2	2	2	-	DWE4324	Economic of water resources I	Fourth
3	3	1	ı	DWE4322 Sanitary and Environmental		Year
	3	1	-	Engineering		1 st Course
3	3	1	-	DWE4326	Design of Dams	
2	2	2	-	DWE4327	Foundations Engineering I	

	-			DILIE (CCC	a		
2	2	-	-	DWE4328	<u> </u>		
3	3	-	-	-	DWE Elective Class		
3	3	-	-	-	DWE Elective Class		
20	20	8	-	Total			
3	3	1		DWE1202	Calculus-2		
4	3		3	DWE1204	Physics -2		
3	3	1	-	DWE2303	Statics	First Year	
4	3	1	3	DWE1210	Engineering Drawing	2 nd Course	
3	3			DWE1102	English Language-1		
2	2	1	-	DWE2104	Human Rights		
20	17	3	6	Total			
3	3	1	-	DWE2212	Calculus-4		
2	2			DWE2200	Construction for Water		
2	2	-	-	DWE2308	Resources Projects		
3	2	1	3	DWE2309	Concrete Technology	Second	
2	1	1	3	DWE2310	Engineering surveying II	Year	
3	3					2 nd Course	
3	2	1	3	DWE2305	Fluid mechanics]	
2	2	_	_	DWE2105	Democracy		
18	15	4	9	Total	-		
3	2	2	3	DWE3316	Soil Mechanics II		
3	3	2		DWE3319	Engineering Management &		
3	3		-	DWESSIS	Economy		
3	2	1	3	DWE3320	Hydraulic Structures	Third Year	
3	3	-	-	DWE3321	Theory of Structures	2 nd Course	
3	2	1	3	DWE3312	Water quality control		
2	2	_	_	DWE3106	Administration and Leadership		
		_		DWL3100	skills		
17	14	6	9	Total			
3	3	1	-	DWE4329	Method of Construction and Estimation		
2	2	2	_	DWE4331	Design of Reinforced		
			- DWE43		Concrete Hydraulic Structures	Fourth	
2	2	2	-	DWE4325	Irrigation engineering	Year	
2	2	2	-	DWE4332	Foundations Engineering II	2 nd Course	
3	3	1	-	DWE4333	Safety, and Operation of Dams	2 Course	
1	-	-	3	DWE4334	Senior Design II		
2	2	2		DWE4330	Economic of water resource II]	
3	3	-	-	-	DWE Elective Class		
18	17	10	3	Total			

12. Degrees: Bachelor

13. Planning for personal development:

- 1. Knowing and studying how to analyze engineering obstacles and link them to reality to direct the student's thought towards practical life.
- 2. Analyzing the results and comparing them with reality to what extent they match the actual design values.

3. Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

14. Admission standard (establishing regulations related to admission to the college or institute):

The student must have an average of no less than 85% in the subjects of mathematics and physics, and the number of students in one stage must not be less than 10 and not more than 40.

15. The most important sources of information about the program: ABET requirements.

Course Description Form

CALCULUS I

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Prove whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

1 Educational institution	Anbar University
2 University Department / Center	Dams and Water Resources Engineering
3 Course Name/Code	Calculus 1/DWE1205
4 Programs in which he enters	Bachelor
5 Available Attendance Forms	Classroom presence
6 Semester / Year	2023-2022
7 Number of Credit Hours (Total)	4
8 The history of preparation of this description	1/9/2021

9 Course Objectives :

- 1. Solve problems using the Fundamental Theorem of Calculus.
- 2. Evaluate Limits of the functions and their continuity.

- 3. Find the derivative of algebraic, trigonometric, exponential, and logarithmic functions.
- 4. Sketch the graph of a function using the information for the first and second derivatives
- 5. Solve problems involving applications of integrals including finding volume of solids of revolution and area between curves

10 Learning outcomes and teaching, learning and assessment methods

- i- Knowledge and understanding
- 1. Identify the basic types of mathematical functions and their derivatives
- 2. Expanding students' perceptions and enhancing the concept of mathematical applications by giving them general principles and concepts about the importance of these applications in engineering fields.

Subject-specific skills

- 1. Detailed study of mathematical equations
- 2. Study the sports topics that the student needs in the future in the labor market

Teaching and learning methods

- 1. Lecture and Presentation
- 2. Solve examples, discuss and apply exercises
- 3. Daily surprise and weekly tests
- 4. Individual homework and reports

Evaluation methods

- 1. Evaluate students individually by giving an opportunity for classroom participation
- 2. Evaluation collectively through exams of all kinds
- 3. Final Exams

Thinking skills

- 1. Analysis of problem-solving results
- 2. Linking mathematical equations and models with realistic engineering applications

Evaluation methods

The evaluation is based on

- 1. Monthly exams 20%
- 2. Daily 10%
- 3. Duties 5%
- 4. Daily participation in class 5%
- 5. Final Exam 60%
- D General and transferred skills (other skills related to employability and personal development).

There is only English language usage

11 Course Structure

The week	Hours	Required Learning Outcomes	Name of the unit/course or topic	Method of education	Evaluation method
First	4	General definitions and the formation of sports models	Functions and models: four ways to represent a function, mathematical models: a catalogue of essential functions	theoretical	Homework
Second	4	Goals and calculation	new functions from old functions, exponential functions, inverse functions and logarithms		Quick Exam
Third	4	Purpose calculations in different ways	Limits: the tangent and velocity problems. The limit of a function, calculating limits using the limit laws.		Obligatory + City Exam
Fourth	4	Introduction to Mustaqsitat	Continuity, limits at infinity, horizontal asymptote. Infinite limits, vertical asymptotes. derivatives and rates of change		Homework
V	4	Methods for calculating the derivative	Differentiation rules: Differentiation of Polynomials. The Product and Quotient Rules. Derivatives of Trigonometric Functions.		Quick Exam
Sixth	4	Additional rules on derivatives	The Chain Rule, Implicit Differentiation.		Homework + Quick Exam
Seventh	4	The relationship of time and its issues	Related Rates		Obligatory + City Exam
Eighth	4	Applications regarding endings	Applications of differentiation: maximum and		Discussion + Questions

			minimum values. The	+
			mean value theorem.	Homework
			How derivatives affect	
			the shape of a graph	
Ninth	4	Drawing functions and their	Summary of curve sketching.	Homework + Quick
		applications	sketching.	Exam
X		Optimization in	Optimization .	Discussion
		engineering	problems.	+ Questions
	4	materials and	Antiderivatives,	+
		applications related	Indeterminate forms	Homework
		to specialization	and l'Hospital's rule.	
Eleventh		Integrals and their	and I Hoopital o Iaio.	Discussion
Lieventin		theory	Integrals: the definite	+ Questions
		theory	integral. The	+ Questions
	4		fundamental theorem	+ Homework
			of calculus.	Homework
			or carcaras.	
Twelfth	4	Definite and	The indefinite integral	Homework
		indefinite integrals	and net change	+ Quick
			theorem. The	Exam
			substitution rule	2.14111
Thirteenth	4	Integration	Applications of	Obligatory
		Applications	integrals: areas	+ City
		ripplications	between curves.	Exam
			Volumes.	Lam
Fourteenth	4	Sizes		Homework
Fourteenth	4	Sizes	Volumes by	Homework
			cylindrical shells.	
			Average value of a	
			function	
Fifteenth	-	Final Exam and	Final Exam	-
		Assessment	I mui Daum	

12Infrastructure	
Required readings:	Calculus, Early Transcendental By James Stewart, 8th Edition, 2016, Cengage Learning
Special requirements	None
Social services (e.g. guest lectures, vocational training and field studies)	None

13 Acceptance						
Prerequisites	None					
Minimum number of students	20					
The largest number of students	40					

Physics

Course description

This is the first course in the two-semester sequence of calculus-based introductory physics courses designed to meet the needs of student majoring in Engineering. The course is a survey of the concepts, principles, methods and major findings of classical Physics. Primarily, it covers Newtonian mechanics, and thermal Physics, with topics include: Physics and measurement, Vectors, kinematics and dynamics of motion of a single particle in one and two dimensions, work and energy, system of particles, linear momentum and collisions, kinematics and dynamics of rotational motion, equilibrium of rigid bodies, and elasticity, fluid static and fluid dynamics, oscillatory motion, wave motion, and temperature and thermal equilibrium.

The subject matter of the course will be covered in The Lab-based section which presents an introduction to the methods of experimental physics emphasis is on developing student's skills in experimental techniques, data analysis, and scientific reporting of lab work. During the course students execute a series of experiments on Kinematics of motion, kinetic and potential energy, Oscillatory motion, Thermal properties of matter, and Viscosity. The course includes computer based experiments on Classical Mechanic

University of anbar-college of engineering	١ ـ المؤسسة التعليمية
Dams and Water resources dep.	٢- القسم الجامعي / المركز
DWE1203	٣- اسم / رمز المقرر
بكالوريوس	٤ - البرامج التي يدخل فيها

دوام رسمي	٥ - أشكال الحضور المتاحة
First semester 2023-2024	٦- الفصل / السنة
84	٧- عدد الساعات الدراسية (الكلي)
Y.Y\/.9/Y.	٨- تاريخ إعداد هذا الوصف

٩_ أهداف المقرر:

- a. developing student's skills in experimental techniques data analysis, and scientific reporting of lab work.
- b. The course is a survey of the concept, principles, methods and major findings of classical physics.

١٠ ـ مخرجات التعلم وطرائق التعليم والتعلم والتقييم:

أولا: الأهداف المعرفية:

- 1- Developing students' skills in analyzing practical information and preparing the scientific report in the laboratory.
- 2- Expanding students' awareness and reinforcing the concepts and principles of classical physics.

ثانيا: الأهداف المهاراتية الخاصة بالمقرر:

- 1 Detailed study.
- 2 Study the mathematical details that the student needs while studying the subject.
- 3- Engineering preparation to be a successful engineer by learning the correct principles of his specialty.

أ- طرائق التعليم والتعلم:

- 1- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems by giving, lecturing, or conducting experiments.
- 2- Solving a group of practical and applied examples by the subject teacher.
- 3- Through discussion, students participate in solving some practical problems.
- 4- Daily surprise and continuous weekly tests.
- 5- Directing students to some websites to benefit from them.

ب- طرائق التقييم:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.

- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 4- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.
- 5- Final exams for the first and second round.

ج- مهارات التفكير:

- 1- Presenting movement problems in a schematic form of the physical system using the Free Body Diagram method.
- 2- Solve problems related to simple rotational motion.
- 3- Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality

د- طرائق التعليم والتعلم:

- 1- Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 2- Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 5- Providing students with practical skills by linking their studies to practical reality.

ه- طرائق التقييم:

يتم التقييم على أساس:

- 1- Monthly exams: 20%
- 2- Daily exams: 10%
- 3- Duties: 5%
- 4- Commitment to working hours + daily participation: 5%
- 5- Laboratory 10%
- 5- Final exam: 50%

و - المهارات العامة والمنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي):

- 1- Enabling students to master the subject in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
 - 3- Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.
- 4- Enabling the student to conduct practical experiments in the laboratory that are related to the course.

١١- بنية المقرر:

طريقة التقييم	طريقة التعليم	اسم الوحدة / المساق أو الموضوع	مخرجات التعلم المطلوبة	الساعات	الأسبوع
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Introduction,	تعريف عام للموضوع	٣	الأول
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	Physics and measurement		٣	الثاني
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Dynamics of motion of a single particle		٣	الثالث
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	Work and energy		٣	الرابع
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	System of particles		٣	الخامس
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Kinematics and Dynamics of rotational motion		٣	السادس
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	Phases of matter		٣	السابع
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Oscillating systems		٣	الثامن
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	Quiz + resolve problems Types of waves		٣	التاسع
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Macroscopic and microscopic description of matter		٣	العاشر
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Measurements and Data Analysis		٣	الحادي عشر
مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Analyzing the kinematic components of 1Dmotion by using motion sensor		٣	الثاني عشر
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	Determination of the Acceleration of Gravity by studying Free fall		٣	الثالث عشر

مناقشة ،امتحان سريع، حل مسائل, واجب بيتي	نظري	Verification of Newton's Second Law		٣	الرابع عشر
مناقشة ،امتحان سريع، حل مسائل , واجب بيتي	نظري	- Quiz + resolve questions Examples	امثلة ومراجعة	٣	الخامس عشر
1st Course Exam					

٢ ١ - البنية التحتية :	
R.D. Knight, Physics for Scientists and Engineers, 2nd ed., Pearson 2008 Laboratory Manual, Compiled by Instructor	القراءات المطلوبة: - كتب المقرر - اخرى
لا يوجد	متطلبات خاصة
لا يوجد	الخدمات الاجتماعية (وتشمل على سبيل المثال محاضر ات الضيوف والتدريب المهني والدر اسات الميدانية)

١٣ - القبول :	
	المتطلبات السابقة
1.	أقل عدد من الطلبة
٤٠	أكبر عدد من الطلبة

Democracy

Course description

This course description provides a summary of the most important characteristics ,of the course and the learning outcomes that the student is expected to achieve demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description

Educational institution - \	College of Engineering/ Anbar University
University - Y department/center	Department of Dams and Water Resources Engineering
Course name/code - "	DWE2105
The programs in which he - t participates	Bachelor's
Available forms of -o attendance	Official working hours
Semester/year -7	first academic year/ First semester
Number of study hours -\((total)	hours **
The date this description -^\(\lambda\) was prepared	_ ٢٠٢١/١٩/٩
Course objectives - 9	

Course objectives - 4

:The definition of a university student is as follows

Knowledge of human rights and the rights of other human beings, these rights approved by .divine laws and then man-made laws at all international, regional and national levels

Then know what public freedoms are, why they are called public, and what freedoms are recognized by divine laws and then in regional and national charters, so that they can be enjoyed and exercised in their correct form without violating the freedoms of others. Then learn about his country's political system by learning about the democratic system practiced by most countries in the world, which is a guarantee of rights and freedoms.

: A : No: Cognitive objectives

- Understanding, knowing, and realizing his rights that God has granted to him and to all humankind, and therefore they are a gift and not a gain from anyone, and no one has the right to take them away
- . The student expresses and defends these rights in his own way
- Explaining the phenomena and giving explanations for the violations of human rights and freedoms that occur before him by identifying the deficiencies or gaps that exist in light of the information available to him
- Understanding the most important political system that guarantees human rights and political freedoms, and trying to implement it on the ground, which is the democratic system

secondly: Skills objectives ofthe : course

• The learner must have the ability to analyze the basic concepts of the subject, which includes the ability to observe, make logical connections, abstract and judge knowledge, and work with knowledge to address problems and choose ideas that help solve them

:Third: Emotional and value goals

- Consolidating these rights and freedoms among the learner and teaching him that these rights and freedoms are not absolute, but rather are determined by the rights and freedoms of others and not to violate them, and therefore every right has a corresponding duty that we are .committed to implementing
- Adapting the lessons of human rights, public freedoms and democracy to be consistent with the culture of human rights and public freedoms and strengthening them with realistic examples while stimulating collective national awareness and spreading a spirit of hope and optimism for a bright future for our countries and staying away from delving into the direct political aspects of parties and other negative expressions, as well as staying away from descriptions. Sectarian or ethnic, personalization of events and their repercussions. Promoting the spirit and values of tolerance and national belonging, rejecting all forms of division and division, and inciting efforts towards upholding the spirit and content of the idea of .citizenship and building a modern, contemporary civil state

: A- Teaching and learning methods

. The introductory method -\

.Dialogical method - 7

.Test method - T

: B- Evaluation methods

.Initial evaluation (by adopting the direct dialogue method) -\

.Continuous evaluation (by conducting a set of exams with multiple options) - 7

Diagnostic evaluation (by conducting scheduled tests at specific times and assigning the coating -\(^{\text{v}}\) .(to perform specialized projects

.Final evaluation -₹

: C- Thinking skills

- . The learner uses the information in real life situations
- Using knowledge to implement projects or change incorrect laws, for example, or for non-governmental organizations to defend human rights
- Improving writing skills, problem solving, dialogue skills, and the ability to work .cooperatively with others in different fields

: D- Teaching and learning methods

Data Show devices, to attract attention and attract students so that the idea reaches the student .better

:Interrogating students through discussion sessions by asking intellectual questions such as $-^{\tau}$.(how, why, when, where, which) for specific topics

Using the method of brainstorming and mental nutrition in order to activate the accumulated - \(\xi\) experiences of students by linking the study materials that were taken in the pre-university educational levels and linking them to the new ones

.Providing students with practical skills by linking their studies to practical reality -°

: E- Evaluation methods

:The evaluation is done on the basis of

Monthly exams: 20% - \\
Daily exams: 10% - \(^7\)

Duties: 5% - T

Commitment to working hours + daily participation: 5% - 5

Final exam: 60% -0

F - General and transferable skills (other skills related to employability and personal : (development

.Enabling students to make the right decision as quickly as possible - \

Enabling students to pass professional tests organized by local authorities - 7.

Enabling students to continue self-development after graduation to keep pace with - $^{\circ}$.developments in their field of specialization

: Course structure - 1 1					
Evaluation method	Teachi ng metho d	Name of the unit/course or subject	Required learning outcomes	hours	the week
Discussion, quick quiz	theoreti cal	Definition of freedom	The student understands the lesson	4	the first
Discussion, quick quiz	theoreti cal	The concept of freedom in Islam	The student understands the lesson	۲	the second
Discussion, secret exam	theoreti cal	Definition of democracy	The student understands the lesson	۲	the third
Discussion, quick quiz	theoreti cal	Freedoms in Islam and their types	The student understands the lesson	۲	the fourth
discussion	theoreti cal	Civil liberties	The student understands the lesson	۲	Fifth
, discussion Written test	theoreti cal	First month exam	The student understands the lesson	۲	VI
discussion	theoreti cal	Freedom of speech	The student understands the lesson	*	Seventh
, discussion Written test	theoreti cal	Freedom to learn	The student understands the lesson	7	VIII
Discussion, quick homework, exam	theoreti cal	Political freedom	The student understands the lesson	7	Ninth
, discussion Written test	theoreti cal	Dialogue and its impact on applying the principle of freedoms	The student understands the lesson	*	The tenth
Discussion, quick homework, exam	theoreti cal	International Bill of Human Rights	The student understands the lesson	۲	eleventh
, discussion Written test	theoreti cal	Second month exam	The student understands the lesson	4	twelveth
	Dat	a Show General		*	Thirteenth

Review	۲	fourteenth

: Infrastructure - ۱۲	
Human rights and their guarantees in Islam	:Required readings Course books Other
nothing	Special requirements
nothing	social services Includes, for example, guest lectures, professional) (training, and field studies

: Acceptance - 1 T		
	Prerequisites	
1.	The smallest number of students	
٤٠	The largest number of students	

Engineering Geology

Module Description Form

	Module Information	
Module Title	Engineering Geology	Module Delivery
Module Type	Core	☑ Theory
Module Code	<u>DWE1303</u>	□ Lecture □ Lab
ECTS Credits	<u>5</u>	☐ Tutorial

SWL (hr/sem)	<u>125</u>			□ Practical □ Seminar		
Module Level		1	Semester of Delivery 2		2	
Administering Department Type Dept. Code College Type College Code						
Module Leader	Rafid Saadoon l	oon Rashid e-mail Rafid.alboresha@uoanbar.edu.iq		edu.iq		
Module Leader's Acad. Title		Assistant Professor	Module Lead	Leader's Qualification Ph.D.		Ph.D.
Module Tutor Name (if available)		e-mail	E-mail			
Peer Reviewer Name Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2021	Version Nun	nber	1.0	

Relation with other Modules				
	العلاقة مع المواد الدراسية الأخرى			
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
Module Objectives	1. To study and identify different types natural materials like rocks & minerals.			
أهداف المادة الدراسية	2. To know the physical properties of rocks & minerals.			
	3. Have knowledge about geohazards, earthquakes, and tunneling.			
	4. To know the importance of geological maps.			
	1. Understand the basic concept of geology.			
Madula Lagraina	2. Understand the formation of rocks and structural features.			
Module Learning	3. Apply acquired knowledge in dams and water resources engineering projects such as			
Outcomes	dams, tunnels and slopes			
	4. Have skills to understand geological survey maps.			
مخرجات التعلم للمادة الدراسية	5. be able to identify potential problems associated with: slope stability; drilling a tunnel;			
. 3	construction of a dam.			
	6. Ability to work in a group.			
Indicative Contents				
المحتويات الإرشادية				

Learning and Teaching Strategies

Strategies

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)						
Structured SWL (h/sem)	Structured SWL (h/sem) 63 Structured SWL (h/w) 4					
Unstructured SWL (h/sem)	62	Unstructured SWL (h/w)	4			
Total SWL (h/sem) 125						

Module Evaluation

تقييم المادة الدراسية

Outro		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
		2	100/ (10)	5 and 10	LO #1, #2 and #10, #11	
	Quizzes	_	10% (10)			
Formative	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7	
assessment	Projects / Lab.	1	10% (10)	Continuous	All	
	Report	1	10% (10)	13	LO #5, #8 and #10	
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)			
Material Covered			
	Introduction		
Week 1	Week 1 - Definition, purpose and scope		
	- The Earth and Its Systems -		

Week 2	Minerals
	-Types and clasifications of minerals
Week 3	Rocks -Types and cycle of rock formation - geological folds, faults and joints
	geological lolas, laulis and joines
Week 4	Engineering & physical properties of rocks
Week 5	First Exam
Week 6	Engineering Maps (Topographic & Geological Maps)
Week 7	Geohazards -ground movements -ground failure
Week 8	-slope unstability -seisms
Week 9	Second Exam
Week 10	Introduction to Geology of Tunnels & Dams I- tunnels -types of tunnels Methods of tunneltunnel (opening) in massive rock, two dimensional case.
Week 11	-stress distribution around circular opening.

	- required studies for tunnels construction (effect of layers, flods and fault).		
Week 12	II- dams -dams importancedams typesrequired studies for dams constructionforces affecting dams.		
Week 13	required studies for dams constructionforces affecting dams.		
Week 14	Third Exam		
Week 15	Preparatory week before the final Exam		

Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered		
Week 1	Lab 1: Minerals description		
Week 2	Lab 2: Minerals classification		
Week 3	Lab 3: Rocks description		
Week 4	Lab 4: Rocks classification		
Week 5	Lab 5: 6.Volume & Density measurement of rocks		
Week 6	Lab 6 Specific Gravity & porosity measurement of rocks		
Week 7	Lab 7: Uniaxial Compressive Strength		
Week 8	Lab 8: Drawing Engineering Geological Maps		

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Terry R. West, Geology Applied to Engineering, Waveland Press, 1995.	Yes		

Recommended	Engineering Mechanics (Statics & Dynamics) / Fourth	No	
Texts	Addition By: R. C. HIBBELER	190	
Websites			

Grading Scheme					
Group	Grade	Marks %	Definition		
	A - Excellent	90 - 100	Outstanding Performance		
Success Group (50 - 100)	B - Very Good	80 - 89	Above average with some errors		
	C - Good	70 - 79	Sound work with notable errors		
	D - Satisfactory	60 - 69	Fair but with major shortcomings		
	E - Sufficient	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Arabic

Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description

Anbar University/ College of Engineering

Educational institution - \

Department of Dams and Water Resources Engineering	University - ^۲ department/center
DWE1101	Course name/code - "
Bachelor's	The programs in which he - t participates
Official working hours	Available forms of -° attendance
First semester/ first academic year	Semester/year - ٦

: A : No: Cognitive objectives

A- Knowledge and understanding

Acquiring the vocabulary explained in the field "Topics to be researched and - "covered"

Acquiring correct literary writing skills -

Ensure that the student is able to write according to language rules and -punctuation

secondly: Skills objectives of the : course

That - \ Be Skills Self Nature Application and that Accompany the study Theory Saucepan KB Y R M N Training .Practical

Attention - With gain requester Skills Addressing technical problems related to design or analysis, taking into account accuracy and speed of results

Input - Topics Study Hadith in fields Design and acquisition methods requester Skills New And recommendation spirit. Innovation and modernization

Selection - ⁵ Exercises And tests that Prepare For students So that Reflect Problems Which of Expected that He meets her Al Ta L B after His graduation like substitution And replacement And renewal . And the amendment

:Third: Emotional and value goals

Creating a spirit of competition between the student and his peers in a way that - \(\).reflects positively on raising the academic level

Developing the scientific and intellectual capabilities in various engineering - Y subjects for distinguished students and implanting the idea of continuing learning .for all

Try as much as possible to find cooperation formulas between the educational -\(^{\text{r}}\) institution and production sites

: A- Teaching and learning methods

- . The introductory method -\
- .Dialogical method -7

.Test method - T

: B- Evaluation methods

.Initial evaluation (by adopting the direct dialogue method) -\

.Continuous evaluation (by conducting a set of exams with multiple options) - 7

Diagnostic evaluation (by conducting scheduled tests at specific times and -\(^{\text{v}}\) .(assigning the coating to perform specialized projects

.Final evaluation - €

: C- Thinking skills

- C1- Developing the student's ability to work on performing assignments and submitting them on the scheduled date
- .C2- Analytical literary thinking capable of analyzing literary texts
- .C3- Developing the student's ability to dialogue and discuss

: D- Teaching and learning methods

Data Show devices, to attract attention and attract students so that the idea reaches .the student better

Giving students extra-curricular assignments that require them to exert skills -\(^1\) and self-explanations in experimental ways

Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics

Using the method of brainstorming and mental nutrition in order to activate the -2 accumulated experiences of students by linking the study materials that were taken in the pre-university educational levels and linking them to the new ones

Providing students with practical skills by linking their studies to practical -o .reality

: E- Evaluation methods

:The evaluation is done on the basis of

Monthly exams: 20% -\
Daily exams: 10% -\

Duties: 5% - ۳

Commitment to working hours + daily participation: 5% - 5

Final exam: 60% -0

F - General and transferable skills (other skills related to employability and : (personal development

- .Developing the student's ability to deal with technical means -\
- .Developing the student's ability to deal with literary texts \(^1\)
- .Developing the student's ability to deal with multiple media T
- .Developing the student's ability to dialogue and discuss 5

: Course structure - 1 1					
Evaluation method	Teachi ng metho d	Name of the unit/course or subject	Required learning outcomes	hours	the week
Discussion, quick quiz	theoreti cal	The hamza at the beginning of speech	The student understands the lesson	٣	the first
Discussion, quick quiz	theoreti cal	punctuation marks	The student understands the lesson	٣	the second
Discussion, secret exam	theoreti cal	The Arabic dictionary	The student understands the lesson	٣	the third
Discussion, quick quiz	theoreti cal	First month exam	The student understands the lesson	٣	the fourth
discussion	theoreti cal	Al–Mutanabbi and his poem	The student understands the lesson	٣	Fifth
, discussion Written test	theoreti cal	A poem by the poet Saleh bin Abdul Quddus	The student understands the lesson	٣	VI
discussion	theoreti cal	Abu Al-Baqa Al- Randi and his poem	The student understands the lesson	٣	Seventh
, discussion Written test	theoreti cal	Ibn Zuraiq Al- Baghdadi and a poem by him	The student understands the lesson	٣	VIII
Discussion, quick homework, exam	theoreti cal	Truth and metaphor	The student understands the lesson	٣	Ninth
, discussion Written test	theoreti cal	Second month exam	The student understands the lesson	٣	The tenth
Discussion, quick homework, exam	theoreti cal	Literature and its	The student understands the lesson	٣	eleventh
, discussion Written test	theoreti cal	A for literary doctrines	The student understands the lesson	٣	twelveth
Data Show General				٣	Thirteenth
	Review				fourteenth

: Acceptance - 1 T				
nothing		Prerequisites		
١.		The smallest number of students		
٤٠		The largest number of students		
nothing Special requirement		nts		
nothing	social services Includes, for example, guest lectures, professional) (training, and field studies			

Applied Physics

Course Description Form

Review The Performance of Higher Education Institutions ((Review of The Academic Program))

Applied physics must be studied because it is one of the basics in the student's understanding of the concepts of physics and basic mathematics, which is an introduction to knowledge of quantum methods, mass, concepts of momentum and energy movement

1. Educational Institution	University of Anbar/College of Engineering
2. University Department/Center	Dams & Water Resources Department

3. Course Name/Code	Applired Physics
4. Program	Bachelor
5. Available Attendance Form	Full Time
6. Semester/Year	Second Term/2022-2023
7. Number of Credit Hours	Yo
8. Date of Description Preparation	9/10/2021

9. Course Objectives:

- Its basic and prominent role in teaching the student to understand basic physics, measurement, the motion of one particle in one dimension and then the kinetics of projectiles and circular motion.
- Teach students to apply and understand Newton's laws of motion.
- Teaching students the concepts of fluid motion within Newton's kinetic laws.

10.Learning outcomes and teaching, learning and assessment methods

First: Cognitive Objectives:

- 1- Learn about the method of measurement and basic units.
- 2- Laws of fluids and gases.
- 3- Laws of energy transfer.
- 4- Flow laws for water.
- 5- Identify thermal equilibrium and its engineering applications.

Second: Course Skills Objectives:

- 1. Learn to use and method physical quantitative measurement.
- 2. Encouraging the student's skills to use different measurement systems and units.
- 3. Expanding academic vocabulary through the use of different methods and laws of movement, rotation and heat.
- 4. Encouraging the student to use laboratory equipment to measure the mass, density or viscosity of materials and fluids.
- 5. Encouraging the student's thinking skills

Teaching And Learning Methods

- 1. Providing students with the basics and topics related to previous education outcomes through recitation or lecture and practical application.
- 2. Solve a set of examples by the subject teacher.
- 3. Expanding the discussion with the participation of students .
- 4. Sudden daily and continuous weekly tests.
- 5. Guiding students to some websites to benefit from them

Evaluation Methods

- 1. Evaluating students individually by giving an opportunity for classroom participation by answering questions.
- 2. Evaluating students collectively through daily exams with practical and theoretical questions.
- 3. Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4. Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5. Final exams for the first and second attempts.

Thinking Skills

- 1. Know and study how to use different methods and systems for physical units .
- 2. Encouraging the student to identify different types of measurement methods and calculate quantities.

Teaching And Learning Methods

- 1. Using modern means to display the scientific and theoretical side, such as Data Show devices to attract attention and attract students to better reach the idea to the student.
- 2. Giving students extracurricular assignments that require them to exert skills and self-explanations in experiential ways.
- 3. Interrogate students through panel discussions by asking thinking questions (how, why, when, where, any) for specific topics.
- 4. Using the brainstorming method and feedback in order to activate the accumulated experiences of students by linking the subjects.

Evaluation Methods

The evaluating according to:

1.	Monthly Quizzes	20%
2.	Quick Quizzes	10%
3.	Assignments	5%
4	Attendance +Participations	5%

5. Labs	10%	
6. Final Exams	50%	

General and transferable skills (other skills related to employability and personal development).

- 1. Enable students to apply physics in its applied and cognitive aspects.
- 2. Develop the student's ability to analyze information and interpret the data obtained by linking the subject he learned with the previous knowledge store.

11. Course Structure

Week	Hours	Required Learning Outcomes	Name of the Unit/Course or Topic	Method of Education	Evaluation Method
1	5	Student understands lesson	Physics and Measurements	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
2	5	Student understands lesson	Motion in one Dimension	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
3	5	Student understands lesson	Vectors	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
4	5	Student understands lesson	Motion in two Dimensions	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
5	5	Student understands lesson	State the Newton's three laws of motion and apply them to solve problems on one dimensional translational motion.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
6	5	Student understands lesson	State the Newton's three laws of motion and apply them to solve problems on two-dimensional translational motion.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
7	5	Student understands lesson	Circular Motion	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
8	5	Student understands lesson	Laws of motion	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works

9	5	Student understands lesson	solving problems of static equilibrium.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
10	5	Student understands lesson	Analyze the problems of static fluid in terms of density and pressure	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
11	5	Student understands lesson	Fluid at motion using the continuity equation and Bernoulli's equation.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
12	5	Student understands lesson	Define what is meant by: temperature, specific and molar heats of capacity.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
13	5	Student understands lesson	State zeroth and first laws of thermodynamics and use them to solve some related problems.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
14	5	Student understands lesson	Explain the theory of heat energy transfers and apply it in some simple situations.	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works
15	5	Student understands lesson	Energy and Energy Transfer	Thermotical & Practical lecture	Discussion, quick exam, solving problem and home works

12. Infrastructure		
References	Physics - Part One - Mechanics and Properties of Matter - Motion and Heat, Rahim Abed ,2018	
Special Reequipments	 Density measuring devices Viscosity measuring devices Fluid flow meters Barometric pressure measuring devices 	
Social services (e.g. guest lectures, vocational training and field studies)		

13. Acceptance		
Prerequisites		
Minimum Students Numbers		
Maximum Students Number	57	

Concrete Technology

Course Description

Concrete technology

It is a science that specializes in the study of the properties of concrete as a structural material, its manufacture and the development of its resistance to withstand the construction loads. The study of concrete technology aims to teach and train the student the basics of this science and the principles of chemical interaction between cement compounds and the effect of additives on the properties of concrete and how to design different types of ordinary or special concrete mixtures as well as the

study of the properties and tests of concrete in its wet and hardened states. It also prepares the student to explain the phenomena or problems that occur in the concrete structure.

10- Learning outcomes and methods of teaching, learning and evaluation:

First: Cognitive Objectives:

- 1- Identify the basic compositions of concrete from cement and its types and aggregates.
- 2- Expanding students' perceptions and enhancing the concept of concrete technology by giving them general principles and concepts about the properties, components and types of concrete mixtures.
- 3- Giving the student experience in studying the effect and types of concrete additives and their properties.
- 4- Learn how to design concrete mixtures and calculate their quantities.
- 5- Learn about the properties of soft concrete and its tests.
- 6- Identify the properties of hardened concrete and its tests

Second: Objectives and skills of the course:

- 1 A detailed study of the science of concrete technology.
- 2 Study the properties and components of concrete.
- 3 Teaching the student after the end of the semester the effect of the quality of concrete in bearing the structural forces.
- 4- Preparing an engineer to be a successful engineer by learning the correct principles of his specialization.

A- Teaching and learning methods:

- 1- Providing students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- 2- Solving a set of practical and applied examples by the subject teacher.
- 3- Through discussion, students are involved by solving some practical problems.
- 4- Sudden daily and weekly continuous tests.
- 5- Attending in private laboratories and conducting scheduled tests and experiments.
- 6- Guiding students to some electronic reality to benefit from them.

B- Evaluation Methods:

- 1- Evaluating students individually by giving an opportunity for classroom participation by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4- Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5- Final exams for the first and second rounds.

C- Thinking skills:

- 1- Knowing and studying how to analyze the forces acting on objects and linking them to reality to direct the student's thought towards practical life.
- 2- Analyzing the results of solving problems and comparing them with reality mentally and the extent to which they match the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and reaching the extent of their truth.

D- Teaching and learning methods:

- 1- Using modern means in presenting the scientific and theoretical side, such as Data Show devices, to attract attention and attract students to better reach the idea to the student.
- 2- Giving students extracurricular duties that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogate students through panel discussions by asking intellectual questions such as: (how, why, when, where, any) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking what has been taken from the subjects taken in the pre-university stages and linking them to the new.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation Methods:

The evaluation is carried out on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to permanence and daily participation: 5%

5- Participation and practical exams: 10%

6- Final exam: 50 %

F- General and transferred skills (other skills related to employability and personal development):

- 1- Enabling students of concrete technology in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze the information and interpret the data obtained by linking the subject he learned with practical reality.
- 3- Enabling the student to use special and general equations to design concrete mixtures and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field examination to determine the liquid pain that falls on the shoulders of the engineer in the field.

1- Educational institution	Anbar University / College of Engineering
2- University Department / Center	Department of Dams and Water Resources Engineering
3- Course name/code	Concrete Technology / DWE2309
4- Programs in which it enters	Bachelor
5. Available Forms of Attendance	Official working hours
6- Semester/Year	Second Semester / Second Academic Year
7- Number of study hours (total)	48
8. Date of preparation of this description	2021-2022

9- Course Objectives:

- A-The student understands the science of concrete technology because it is one of the scientific and applied foundations of dam engineering and water resources.
- B It has an important role in increasing the student's intellectual perceptions to deal with engineering problems and achieve solutions to these problems.
- C- Its basic and prominent role in building the design of buildings and facilities related to irrigation engineering and dams.

11. Course Structure:

The week	Hours	Required Learning Outcomes	Name of the unit/course or topic	Method of educatio n	Evaluation method
The first	3	Introduction	General Introduction to Concrete	theoretica l	Discussion, Quick Exam, Problem Solving, Homework
Second	3	Additives	Types and properties of additives	theoretica l	Discussion, Quick Exam, Problem Solving, Homework
Third	3	Additives	Types and properties of additives	theoretica 1	Discussion, Quick Exam, Problem Solving, Homework
Fourth	3	Types of concrete	Different types of concrete	theoretica l	Discussion, Quick Exam, Problem Solving, Homework
V	3	Types of concrete	Different types of concrete	theoretica 1	Discussion, Quick Exam, Problem Solving, Homework
Sixth	3	practical	Explain and conduct some experiments and tests	practical	Discussion, Quick Exam, Problem Solving, Homework
Seventh	3	Concrete mixes	Design of concrete mixes	theoretica 1	Discussion, Quick Exam, Problem Solving, Homework
Eighth	3	Concrete mixes	Design of concrete mixes	theoretica	Discussion, Quick Exam, Problem Solving, Homework
Ninth	3	practical	Explain and conduct some experiments and tests	practical	Discussion, Quick Exam, Problem Solving, Homework
X	3	Soft concrete	Properties and tests of soft concrete	theoretica 1	Discussion, Quick Exam, Problem Solving, Homework
Eleventh	3	practical	Explain and conduct some experiments and tests	practical	Discussion, Quick Exam, Problem Solving, Homework
Twelfth	3	Hard Concrete	Properties and tests of solid concrete	theoretica l	Discussion, Quick Exam, Problem Solving, Homework

Thirteenth	3	practical	Explain and conduct some experiments and tests	practical	Discussion, Quick Exam, Problem Solving, Homework
Fourteenth	3	Hard Concrete	Properties and tests of solid concrete	theoretica l	Discussion, Quick Exam, Problem Solving, Homework
Fifteenth	3	Review			
Sixteenth	3	Review			

Hun	nan Rights 2- Building Materials Technology I
Minimum number of students	10
The largest number of students	40

12- Infrastructure:	
Required readings:	Concrete technology - Dr. Moayad Nouri Al-Khalaf and Dr. Hanaa Abd Youssef Concrete Technology - Dr. M.S.Shetty Properties of Concrete - A.M.Neville Concrete additives - Dr. Moayad Nouri Khalaf Concrete technology - B.L. Gupta and Amit Gupta
Special requirements	Concrete Laboratory
Social Services (Includes for example guest lectures, vocational training and field studies)	There isn't any

Descr

Defining human rights and then explaining its importance and divisions

Anbar University/ College of Engineering	Educational institution - \
Department of Dams and Water Resources Engineering	University - [†] department/center
DWE2104	Course name/code -*
Bachelor's	The programs in which he - 2 participates
Official working hours	Available forms of -° attendance
First semester/ first academic year	Semester/year - 7
hours *•	Number of study hours -\(\text{(total)} \)
_ ٢٠٢٣/٢٠/٩	The date this description -^\text{was prepared}

: Course objectives - 9

e student should be able to recognize the basic principles of . \
man rights

e student should be able to identify the roots of human rights . range of their development in human history

e student should be able to identify human rights in .*
Intemporary and modern history

: A : No: Cognitive objectives

.The student learns about the basic principles of human rights -\

The student learns about the roots of human rights and their development in -\(^1\).human history

- . The student learns about human rights in the Middle Ages T
- .The student learns about human rights in contemporary and modern history £
- .The student learns about regional recognition of human rights -°
- .The student learns about necessary human rights and collective human rights \7

secondly: Skills objectives ofthe : course

.Familiarity with the basic principles of human rights - \

Familiarity with the roots of human rights and their development in human - \(\cdot \). history

.Familiarity with human rights in contemporary and modern history -

.B4- Familiarity with necessary human rights and collective human rights

:Third: Emotional and value goals

Creating a spirit of competition between the student and his peers in a way that - \(^1\).reflects positively on raising the academic level

Developing the scientific and intellectual capabilities of distinguished students - Υ and implanting the idea of continuing learning for all

Try as much as possible to find forms of cooperation between the educational -r institution and society

: A- Teaching and learning methods

- . The introductory method -\
- .Dialogical method 7
- .Test method "

: B- Evaluation methods

.Initial evaluation (by adopting the direct dialogue method) - \

.Continuous evaluation (by conducting a set of exams with multiple options) -7

Diagnostic evaluation (by conducting scheduled tests at specific times and -

.(assigning the coating to perform specialized projects

.Final evaluation -ξ

: C- Thinking skills

Knowing and studying how to analyze the forces affecting objects and linking -\(^1\). them to reality to direct the student's thought towards practical life

Analyze the results of solving problems and compare them mentally with - \(\tau \) reality and the extent of their conformity with the actual design values

Analyzing the results obtained by the student by conducting practical reports - $^{\tau}$ and determining the extent of their reality

: D- Teaching and learning methods

.The teacher delivers detailed theoretical lectures -\

.The teacher requests periodic reports on the basic topics of the subject -

Asking the student to visit the library and the international information network (the Internet) to obtain additional knowledge of the academic
.subjects

: E- Evaluation methods

:The evaluation is done on the basis of

Monthly exams: 20% - \ Daily exams: 10% - \

Duties: 5% - "

Commitment to working hours + daily participation: 5% - 5

Final exam: 60% -0

F - General and transferable skills (other skills related to employability and : (personal development

.Enabling students to write practical reports on topics related to human rights - \(\). Enabling students to self-development - \(\)

Developing the student's ability to analyze information and interpret the data - \(^{\text{T}}\). he obtained through practical discussion

Enabling students to overcome potential obstacles between human rights and -5 public freedoms

Course structur					
Evaluation method	Teachi ng metho d	Name of the unit/course or subject	Required learning outcomes	hours	the week
	1			1	T.
Discussion, quick quiz	theoreti cal	The emergence of the idea of rights in positive legislation	The student understands the lesson	4	the first
Discussion, quick quiz	theoreti cal	Law departments	The student understands the lesson	۲	the second
Discussion, secret exam	theoreti cal	Sections of rights in law	The student understands the lesson	*	the third
Discussion, quick quiz	theoreti cal	Sections of rights in the principles of Islamic jurisprudence	The student understands the lesson	۲	the fourth
discussion	theoreti cal	The rights of the individual over society	The student understands the lesson	4	Fifth
, discussion Written test	theoreti cal	Society's rights over the individual	The student understands the lesson	۲	VI
discussion	theoreti	First month	The student understands the	۲	Seventh

cal

theoreti

cal

, discussion

Written test

Rights of the

individual over

the individual

lesson

The student

understands the

lesson

۲

VIII

Discussion, quick homework, exam	theoreti cal	The right to equality before Sharia and the law	The student understands the lesson	۲	Ninth
, discussion Written test	theoreti cal	God's rights are a guarantee of human rights	The student understands the lesson	۲	The tenth
Discussion, quick homework, exam	theoreti cal	Spiritual energy	The student understands the lesson	۲	eleventh
, discussion Written test	theoreti cal	Second month exam	The student understands the lesson	۲	twelveth
Data Show General Review				۲	Thirteenth fourteenth

: Acceptance - ۱۳			
	Prerequisites		
1.	The smallest number of students		
٤٠	The largest number of students		
: Infrastructure - ۱۲			
Human rights and their guarantees in Islam	Required :readings Course books Other		
All solid scientific journals that are related to the broad conhuman rights	cept of	Special requirements	

Websites on the Internet related to human rights	social services
	Includes, for)
	example, guest
	,lectures
	professional
	training, and
	(field studies

Concrete Technology

Course Description

Concrete technology

It is a science that specializes in the study of the properties of concrete as a structural material, its manufacture and the development of its resistance to withstand the construction loads. The study of concrete technology aims to teach and train the student the basics of this science and the principles of chemical interaction between cement compounds and the effect of additives on the properties of concrete and how to design different types of ordinary or special concrete mixtures as well as the study of the properties and tests of concrete in its wet and hardened states. It also prepares the student to explain the phenomena or problems that occur in the concrete structure.

2- University Department / Center	Department of Dams and Water Resources Engineering
3- Course name/code	Concrete Technology / DWE2309
4- Programs in which it enters	Bachelor
5. Available Forms of Attendance	Official working hours
6- Semester/Year	Second Semester / Second Academic Year
7- Number of study hours (total)	48
8. Date of preparation of this description	2022-2023

9- Course Objectives:

- A-The student understands the science of concrete technology because it is one of the scientific and applied foundations of dam engineering and water resources.
- B It has an important role in increasing the student's intellectual perceptions to deal with engineering problems and achieve solutions to these problems.
- C- Its basic and prominent role in building the design of buildings and facilities related to irrigation engineering and dams.

10- Learning outcomes and methods of teaching, learning and evaluation:

First: Cognitive Objectives:

- 1- Identify the basic compositions of concrete from cement and its types and aggregates.
- 2- Expanding students' perceptions and enhancing the concept of concrete technology by giving them general principles and concepts about the properties, components and types of concrete mixtures.
- 3- Giving the student experience in studying the effect and types of concrete additives and their properties.
- 4- Learn how to design concrete mixtures and calculate their quantities.
- 5- Learn about the properties of soft concrete and its tests.
- 6- Identify the properties of hardened concrete and its tests

Second: Objectives and skills of the course:

- 1 A detailed study of the science of concrete technology.
- 2 Study the properties and components of concrete.
- 3 Teaching the student after the end of the semester the effect of the quality of concrete in bearing the structural forces.
- 4- Preparing an engineer to be a successful engineer by learning the correct principles of his specialization.

A- Teaching and learning methods:

- 1- Providing students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- 2- Solving a set of practical and applied examples by the subject teacher.
- 3- Through discussion, students are involved by solving some practical problems.
- 4- Sudden daily and weekly continuous tests.
- 5- Attending in private laboratories and conducting scheduled tests and experiments.
- 6- Guiding students to some electronic reality to benefit from them.

B- Evaluation Methods:

- 1- Evaluating students individually by giving an opportunity for classroom participation by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4- Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5- Final exams for the first and second rounds.

C- Thinking skills:

- 1- Knowing and studying how to analyze the forces acting on objects and linking them to reality to direct the student's thought towards practical life.
- 2- Analyzing the results of solving problems and comparing them with reality mentally and the extent to which they match the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and reaching the extent of their truth.

D- Teaching and learning methods:

- 1- Using modern means in presenting the scientific and theoretical side, such as Data Show devices, to attract attention and attract students to better reach the idea to the student.
- 2- Giving students extracurricular duties that require them to exert skills and selfexplanations in experimental ways.

- 3- Interrogate students through panel discussions by asking intellectual questions such as: (how, why, when, where, any) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking what has been taken from the subjects taken in the pre-university stages and linking them to the new.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation Methods:

The evaluation is carried out on the basis of:

1- Monthly exams: 20%

2- Daily exams: 10%

3- Duties: 5%

4- Commitment to permanence and daily participation: 5%

5- Participation and practical exams: 10%

6- Final exam: 50 %

F- General and transferred skills (other skills related to employability and personal development):

- 1- Enabling students of concrete technology in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze the information and interpret the data obtained by linking the subject he learned with practical reality.
- 3- Enabling the student to use special and general equations to design concrete mixtures and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field examination to determine the liquid pain that falls on the shoulders of the engineer in the field.

11. Course Structure:

The week	Hours	Required Learning Outcomes	Name of the unit/course or topic	Method of educati on	Evaluation method
The first	3	Introducti on	General Introduction to Concrete	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Second	3	Additives	Types and properties of additives	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Third	3	Additives	Types and properties of additives	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Fourth	3	Types of concrete	Different types of concrete	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
V	3	Types of concrete	Different types of concrete	theoreti	Discussion, Quick Exam, Problem Solving, Homework
Sixth	3	practical	Explain and conduct some experiments and tests	practica 1	Discussion, Quick Exam, Problem Solving, Homework
Seventh	3	Concrete mixes	Design of concrete mixes	theoreti	Discussion, Quick Exam, Problem Solving, Homework
Eighth	3	Concrete mixes	Design of concrete mixes	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Ninth	3	practical	Explain and conduct some experiments and tests	practica 1	Discussion, Quick Exam, Problem Solving, Homework
X	3	Soft concrete	Properties and tests of soft concrete	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework

Eleventh	3	practical	Explain and conduct some experiments and tests	practica 1	Discussion, Quick Exam, Problem Solving, Homework
Twelfth	3	Hard Concrete	Properties and tests of solid concrete	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Thirteenth	3	practical	Explain and conduct some experiments and tests	practica 1	Discussion, Quick Exam, Problem Solving, Homework
Fourteenth	3	Hard Concrete	Properties and tests of solid concrete	theoreti cal	Discussion, Quick Exam, Problem Solving, Homework
Fifteenth Sixteenth	3		Revi		

Fluid Mechanics

Course Description Form

12- Infrastructure:				
Required readings:	Concrete technology - Dr. Moayad Nouri Al-Khalaf and Dr. Hanaa Abd Youssef Concrete Technology – Dr. M.S.Shetty Properties of Concrete – A.M.Neville Concrete additives – Dr. Moayad Nouri Khalaf Concrete technology – B.L. Gupta and Amit Gupta			
Special requirements	Concrete Laboratory			
Social Services (Includes for example guest lectures, vocational training and field studies)	There isn't any			

Fluid Mechanics

Fundamental concepts. Properties of fluids. Fluid Statics. Momentum and energy equations, applications. Bernoulli equation, applications. Dimensional analysis and similitude. Introduction to viscous flows. Internal flows, laminar and turbulent flows. Head loss and friction factor. Flow over immersed bodies (external flow).

Course Description

1- Educational institution	Anbar University / College of Engineering	
2- University Department / Center	Department of Dams and Water Resources Engineering	
3- Course name/code	DWE2305	
4- Programs in which it enters	Bachelor	
5. Available Forms of Attendance	Official working hours	
6- Semester/Year	First Semester / Second Academic Year	
7- Number of study hours (total)	80	
8. Date of preparation of this description	28/1/2022	

9- Course Objectives:

Upon completion of this course, students will be able to:

- 1 The students should be able to define and describe the following basic properties of fluid such as relative density or specific density, viscosity, surface tension, atmospheric pressure as well as Newtonion and Non-Newtonion fluids.
- 2. The students will be able to describe and define the hydrostatic forces on submerged surface, and calculate it.
- 3. The student will be able to identify the laminar and turbulent flow.
- 4. The students should demonstrate an understanding of the following concepts relating to fluid in motion: Quntiuity equation, Bernolli equation, Momentume concept
- 5. The student will be able to apply the fundemental concepts to problems of flow in pipes.

- 6. The student will be able to determine the losses of flow in pipes.
- 7. The students will learn the differences and similarities between pipe flow systems like, pipes in series, pipe in parallel and brach pipes and how to solve these problems.

10- Learning outcomes and methods of teaching, learning and assessment:

First: Cognitive Objectives:

1 Use rectangular, normal-tangential, and polar coordinate systems to describe the motion (kinematics) of a

particle, system of particles, and rigid bodies.

2 Use Newton's Second Law, Work-Energy, and Impulse-Momentum principles to determine the kinetics of

particles, systems of particles, and rigid bodies.

- 3 Understand and solve introductory vibration problems.
- 4 In applying the above principles, continue to develop a systematic, orderly procedure for solving

engineering problems and design mechanical device using their knowledge in Dynamics.

Second: Course Skills Objectives:

- 1 A detailed study of the mechanics of fluid science.
- 2- Studying the mathematical details that the student needs during his study of the subject.
- 3- Preparing an engineer to be a successful engineer by learning the correct principles of his specialization.

A- Teaching and learning methods:

- 1- Providing students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- 2- Solving a set of practical and applied examples by the subject teacher.
- 3- Through discussion, students are involved by solving some practical problems.
- 4- Sudden daily and weekly continuous tests.
- 5- Guiding students to some websites to benefit from them.

B- Evaluation Methods:

1- Evaluating students individually by giving an opportunity for classroom participation by answering questions.

- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4- Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5- Final exams for the first and second rounds.

C- Thinking skills:

- 1- Knowing and studying how to analyze the factors affecting the flow and turn them into principles of design and link them to reality to direct the student's thought towards practical life.
- 2- Analyzing the results of solving problems and comparing them with reality mentally and the extent to which they match the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and reaching the extent of their truth.

D- Teaching and learning methods:

- 1- Using modern means in presenting the scientific and theoretical side, such as Data Show devices, to attract attention and attract students to better reach the idea to the student.
- 2- Giving students extracurricular duties that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogate students through panel discussions by asking intellectual questions such as: (how, why, when, where, any) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking what has been taken from the subjects taken in the pre-university stages and linking them to the new.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation Methods:

The evaluation is carried out on the basis of:

1- Monthly exams: 20%

2- Daily exams: 10%

3- Duties: 5%

4- Commitment to permanence + daily participation: 5%

5 - Laboratory (practical side): 10%

6- Final exam: 50%

General and transferable skills (other skills related to employability and personal development):

- 1- Enabling students to study the material in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze the information and interpret the data obtained by linking the subject he learned with practical reality.
- 3- Enabling the student to use the special and general equations of the subject and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems that fall on the shoulders of the engineer in the field.

11. Course Structure:

The week	Hours	Required Learning Outcomes			Evaluation metho
The first	5	General definition of the subject	Introduction, Properties of fluids	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Second	5	Liquids in equilibrium	Fluid in static pressure Lab 1 Fluid Properties Lab 2 Fluid Statics	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Third	5	Calculating forces on submerged surfaces of all kinds	on submerged Hydrostatic force on submerged surface theoretical		Discussion, Quick Exam, Problem Solvi Homework
Fourth	5	Introduction to calculating energy for flow and defining Bernoulli's equation	Quiz with resolve problems and discussion Lab 3 Bernoulli Equation	theoretical	Discussion, Quick Exam, Problem Solvi Homework
V	5	Introduction to Momentum Equation with Applications	Liquid in motion Rate of change of momentum,	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Sixth	5	Drawing of power line and hydraulic line	Energy and hydraulic grade lines	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Seventh	5	Definition of closed flow	Lab 4 Velocity Profiles, <i>Pipes</i> flow	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Eighth	5	Calculation of losses in flow and definition of their types	Quiz + resolve problems, Losses in flow of fluid	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Ninth	5	Practical examples on the topic	in flow), Friction factor in theoretics		Discussion, Quick Exam, Problem Solvi Homework
X	5	Pipeline flow issues, taking into account possible cases	- Simple pipe problems	theoretical	Discussion, Quick Exam, Problem Solvi Homework

Eleventh	5	Definition of types of connection in pipes	Pipes in series and in parallel, Lab 6 Sluice Gate	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Twelfth	5	Practical examples on the topic	- Quiz + resolve problems Lab 8 Weir Flow	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Thirteenth	5	Definition of Euler's Energy Equation	Energy equation	theoretical	Discussion, Quick Exam, Problem Solvi Homework
ourteenth	5	define and use the Lycee equation for channel design	Conservation of Momentum	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Fifteenth	5	Examples and review	- Quiz + resolve questions, Rivew	theoretical	Discussion, Quick Exam, Problem Solvi Homework
Sixteenth	5		1st Course Exa	m	

12- Infrastructure:				
Required readings: Course Books Other	Search in Internet subject related to course topics (http://www fluid mechanics, pipes, Fluid Statics etc)			
special requirements	There isn't any			
Social services (e.g. guest lectures, vocational training and field studies)	There isn't any			

13- Acceptance:				
Prerequisites	Principles of Engineering Mechanics and Physics			
Minimum number of students	10			
The largest number of students	40			

13- Acceptance:				
Prerequisites	1- Chemistry I 2- Building Materials Technology I			
Minimum number of students	10			
The largest number of students	40			

Engineering Surveying 1

Course description form

Reviewing the performance of higher education institutions (academic program review((

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE2308 Engineering Surveying 1	3. Course name/code
Engineering	4. The programs he participates in
electronic	5. Available forms of attendance
(theoretical)	6. Semester/year
First semester 2021-2022	7. Number of study hours (total)

80 hours distributed as follows: 5 hours per week

8. Date this description was prepared

- 1. Show the student the necessity of redundant information and methods for determining and evaluating errors.
 - 2. Understand the principles of leveling, measure vertical distances and apply the skills of leveling.
 - 3. Understand the principle of angles measurements and determine the directions.
 - 4. Develop, test and calibrate of sensors, instruments and systems for the surveying purposes.
- 5. Define the importance of traverse computation in omitted measurement and compute area of plots by using different types of area computation techniques.
- 9 .Learning outcomes and methods of teaching, learning and evaluation
- A. Teaching and learning methods
- \. Lectures

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	١
Homework+practical	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	٥
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development.(
- Show the student the necessity of redundant information and methods for determining and evaluating errors.

- 2. Understand the principles of leveling, measure vertical distances and apply the skills of leveling.
- 3. Understand the principle of angles measurements and determine the directions.
- 4. Develop, test and calibrate of sensors, instruments and systems for the surveying purposes.
- 5. Define the importance of traverse computation in omitted measurement and compute area of plots by using different types of area computation techniques.

10.Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures + practical	TAPING MESUREMENTS		5	١
Short exam + assignments + attendance and participation	Lectures + practical	LEVELING—THEORY AND METHODS		5	۲
Short exam + assignments + attendance and participation	Lectures + practical	LEVELING—THEORY AND METHODS		5	٣
Short exam + assignments + attendance and participation	Lectures + practical	LEVELING—THEORY AND METHODS		5	٤
Short exam + assignments + attendance and participation	Lectures + practical	LEVELING—THEORY AND METHODS		5	٥
Short exam + assignments + attendance and participation	Lectures + practical	DISTANCE MEASUREMENTS USING TACHEOMETRIC OR OPTICAL METHOD		5	٦
Short exam + assignments + attendance and participation	Lectures + practical	DISTANCE MEASUREMENTS USING EDM		5	٧
Short exam + assignments + attendance and participation	Lectures + practical	ANGLES, AZIMUTH, AND BEARINGS		5	٨
Short exam + assignments + attendance and participation	Lectures + practical	ANGLES, AZIMUTH, AND BEARINGS		5	٩
Short exam + assignments + attendance and participation	Lectures + practical	TRAVERSING		5	١.
Short exam + assignments + attendance and participation	Lectures + practical	ANGLES, AZIMUTH, AND BEARINGS		5	11
Short exam + assignments +	Lectures + practical	ANGLES, AZIMUTH, AND BEARINGS		5	١٢

attendance and participation				
Short exam + assignments + attendance and participation	Lectures + practical	TRAVERSING	5	١٣
Short exam + assignments + attendance and participation	Lectures + practical	TRAVERSING	5	١٤
Short exam + assignments + attendance and participation	Lectures + practical	TRAVERSING	5	10

11 .Infrastructure				
Reference name	Author name	Required readings:		
Elementary Surveying An Introduction to Geomatics CHARLES D. GHILANI & PAUL R. WOLF		Course booksOther		
		Special requirements		
		Social services (including, for example, guest lectures, vocational training, and field studies(

12.Acceptance	
	Prerequisites
	The smallest number of students
	The largest number of students

Engineering Surveying 2

Course description form

Reviewing the performance of higher education institutions (academic program review((

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE2309 Engineering Surveying II	3. Course name/code
Engineering	4. The programs he participates in
electronic	5. Available forms of attendance
(theoretical)	6. Semester/year
Second semester 2021-2022	7. Number of study hours (total)
80 hours distributed as follows: 5 hours per week	8. Date this description was prepared

^{1.} Compute area by using different types of area computation techniques.

2. Determine volumes of various types of material and determine of quantities of water discharged by streams and rivers, per unit of time.

- 3. Lay out different type of horizontal curve in the field with surveying equipment.
 - 4. Determine the position of point using GPS.
- 5. The acquisition and use of spatial information from aerial and satellite imagery and administration of geographic information systems (GIS)

9 .Learning outcomes and methods of teaching, learning and evaluation

A. Teaching and learning methods

\. Lectures

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	١
Homework+Practical	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	0
final exam	7

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development.(
- 1. Compute area by using different types of area computation techniques.
- 2. Determine volumes of various types of material and determine of quantities of water in reservoir.
- 3. Lay out different type of horizontal curve in the field with surveying equipment.
- 4. Determine the position of point using GPS.
- 5. The acquisition and use of spatial information from aerial and satellite imagery and administration of geographic information systems (GIS)
- 6. Apply different type of surveying equipment in hydrographic surveying.

11.Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures + practical	Areas		5	1
Short exam + assignments + attendance and participation	Lectures + practical	Areas		5	۲
Short exam + assignments + attendance and participation	Lectures + practical	Volumes		5	٣
Short exam + assignments + attendance and participation	Lectures + practical	Volumes		5	٤
Short exam + assignments + attendance and participation	Lectures + practical	Volumes		5	٥
Short exam + assignments + attendance and participation	Lectures + practical	Horizontal curves		5	٦
Short exam + assignments + attendance and participation	Lectures + practical	Horizontal curves.		5	٧
Short exam + assignments + attendance and participation	Lectures + practical	Global Position System (GPS)		5	٨
Short exam + assignments + attendance and participation	Lectures + practical	Global Position System (GPS)		5	٩
Short exam + assignments + attendance and participation	Lectures + practical	Basic principle of remote sensing		5	١.
Short exam + assignments + attendance and participation	Lectures + practical	Basic principle of remote sensing		5	11
Short exam + assignments +	Lectures + practical	Introduction to Geographic		5	١٢

attendance and participation		Information System (GIS).		
Short exam + assignments + attendance and participation	Lectures + practical	Introduction to Geographic Information System (GIS).	5	١٣
Short exam + assignments + attendance and participation	Lectures + practical	Hydrographic surveying.	5	١٤
Short exam + assignments + attendance and participation	Lectures + practical	Hydrographic surveying.	5	10

11 .Infrastructure				
Reference name Reference name CHARLES D. GHILANI & PAUL R. WOLF		Required readings:		
		Social services (including, for example, guest lectures, vocational training, and field studies(

12.Acceptance	
	Prerequisites
	The smallest number of students
	The largest number of students

Calculus III

Course description form

Reviewing the performance of higher education institutions ((academic program review))

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

1. Educational Institution	University of Anbar
2. University Department/Center	College of Engineering/Department of Dams and
3. Course name/code	DWE3310/ Calculus III
4. Programs included in	Calculus III
5. Available forms of attendance	
6. Semester/Year	First /2021

7. Number of study hours	60				
8. Date this description was prepared	01/2022				
9. Course objectives:					
Conducting scientific and applied research to develop techniques in the field of mathematics related to engineering and also to contribute to solving mathematical problems and engineering equations.					
Linking the field of sports to the field of information technology					
Preparing university teachers who possess the educational skills necessary to teach mathematics					
Developing students' scientific attitud own abilities in their higher studies	es to enable them to develop their				
Providing students with how to innovate and develop educational methods					

Learning outcomes and methods of teaching, learning and evaluation \{

1. Knowledge and understanding

for use in teaching mathematics

- 1. Recognize the 3-space in different types of coordinates systems.
- 2. Do operations on vectors.
- 3. Identify different types of equations of lines, planes and surfaces.
- 4. Recognize different types of calculus operations of vector-valued functions.

B- Subject-specific skills
Teaching mathematics to the second stage.
Building appropriate education strategies for the second stage.
Constructing mathematics tests to evaluate the achievement of second-stage students.

Developing self-abilities in developing their abilities by teaching mathematics to teach.

Teaching and learning methods

- -Theoretical lecture
- -Discussion sessions
 - -Student theoretical research

Evaluation methods:

- .\Homework
- . Y Daily Quiz
- . "Scientific reports
- . ¿Attendance
- .oInteraction in lectures
 - 1. .\Final exam

C- Thinking skills

- 1. Recognize the three space in different types of coordinates systems.
- **2.** Do operations on vectors.
- 3. Identify different types of equations of lines, planes and surfaces

Teaching and learning methods

-Preparing theoretical scientific reports

Solve applied questions and assignments related to mathematics.

Evaluation methods

- –Understanding scientific material and mathematical principles.
- -Multiple choice questions.
- -Interview questions
- -Completion questions.
- –Apply knowledge in a simple way to interpret data,
- - General and transferable skills (other skills related to employability and personal development).

The ability to present, discuss, and defend ideas orally, in writing, and electronically

Course Structure

Evalua tion metho d	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Daily exams	lecture	Rectangular Coordinate systems in 3-space. Vectors		5	1
Daily exams		Dot product, projections. Cross product		٥	۲
Daily exams		Parametric equations of a line. Planes in 3-space		٥	٣
Daily exams		Introduction to vector-valued functions. Calculus of vector-valued functions		٥	٤
Daily exams		Change of parameters, Arc Length. Unit Tangent, Normal and Binormal vectors		٥	٥
Daily exams		Curvature		٥	٦
Daily exams		Quadric Surfaces. Functions of two or more variables		٥	٧
Daily exams		Limits and continuity. Partial derivatives		٥	٨
Daily exams		Differentiability, Local Linearity. The Chain rule		٥	٩

Daily		٥	١.
exams	Directional	J	1 •
	derivatives and		
	gradients. Tangent		
	planes and normal		
	vectors		
Daily	Maxima and	٥	11
exams			
	minima of		
	functions of two		
	variables.		
Daily		٥	١٢
exams	Double integrals.		
	Double integrals		
	over non		
	rectangular regions		
Daily		٥	١٣
exams	Double integrals in		
	polar coordinates.		
	Triple integrals		
Daily		٥	١٤
exams	Cylindrical and		
	spherical		
	coordinates.		
Daily		٥	10
exams	Triple integrals in		
	cylindrical and		
	Spherical		
	coordinates		
	coordinates		

	Infrastructure .
Calculus, by H. Anton, I. Bivens, and S. Davis, 8th Edition, 2002, Wiley	Required readings: 2 Course books 2 Other
Daily homework will be due at the beginning of the next class after it is assigned unless otherwise noted in class. All homework assignments should be turned in before class begins. Work turned in late will be penalized in increments of 10% per day. Work will not be accepted beyond two days late without special coordination affected prior to the due date. Students in this course with disability requiring an accommodation should contact the professor as soon as possible or contact the head of the department.	Special requirements
	Social services (including, for example, guest lectures, vocational training, and field studies)

	Acceptance .
	Prerequisites
1.	The smallest number of students
۲.	The largest number of students

Calculus 4

Course Description

9- Course Objectives:

Calculus 4, builds upon the concepts learned in Calculus 1, 2, and 3. It focuses on the study of functions of several variables and extends the ideas of differentiation and integration from single-variable calculus to multiple variables.

The course typically covers topics such as:

- 1. Vectors and Geometry: Introduction to vectors, dot product, cross product, lines, planes, and surfaces in three-dimensional space.
- 2. Partial Differentiation: Computing partial derivatives, tangent planes, gradient vectors, directional derivatives, and optimization problems.
- 3. Multiple Integration: Double and triple integrals, iterated integrals, changing coordinate systems, and applications including finding areas, volumes, and mass

Department of Dams and Water Resources Engineering DWE2212 3- Course Name/Code Bachelor Bachelor Official working hours 2- University Department / Center 3- Course Name/Code 4- Programs in which he enters 5- Available Attendance Forms
Bachelor 4- Programs in which he enters Official working hours 5- Available Attendance
Official working hours Bachelor enters 5- Available Attendance
Official working hours
Second Semester / Second Academic Year 6- Semester / Year
7- Number of Credit Hours (Total)
8- The history of preparation of this description

To help students to develop skills and knowledge for standard concepts in solving Differential Equations.

9- Learning Outcomes, Teaching, Learning and Assessment Methods:

First: Cognitive Objectives:

- 1- Identify the basic types of mathematical functions and their derivatives.
- 2- Expanding students' perceptions and enhancing the concept of mathematical applications by giving them general principles and concepts about the importance of these applications in engineering fields.

Second: Course Skills Objectives:

- 1 A detailed study of mathematical equations.
- 2- Studying the mathematical details that the student needs during his study of the subject.
- 3- Preparing an engineer to be a successful engineer by learning the correct principles of mathematical applications for his specialization.

A- Teaching and learning methods:

- \- Provide students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through delivery, lecture or experiments.
- 2- Solving a set of practical and applied examples by the subject teacher.
- 3- Through discussion, students are involved by solving some practical problems.
- 4- Sudden daily and weekly continuous tests.
- 5- Guiding students to some websites to benefit from them.

B- Evaluation Methods:

- \(-\) Evaluate students individually by giving an opportunity for classroom participation by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.

- 3- Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4- Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5- Final exams for the first and second rounds.

C- Thinking skills:

- \'- Knowing and studying how to analyze the factors affecting the flow and turn them into principles of design and link them to reality to direct the student's thought towards practical life.
- 2- Analyzing the results of solving problems and comparing them with reality mentally and the extent to which they match the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and reaching the extent of their truth.

D- Teaching and learning methods:

- \'- Using modern means in presenting the scientific and theoretical side, such as Data Show devices to attract attention and attract students to better reach the idea to the student.
- 2- Giving students extracurricular duties that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogate students through panel discussions by asking intellectual questions such as: (how, why, when, where, any) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking what has been taken from the subjects taken in the pre-university stages and linking them to the new.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation Methods:

The evaluation is carried out on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to permanence + daily participation: 5%

5- Final exam: 60%

F- General and transferred skills (other skills related to employability and personal development):

- 1- Enabling students to study the material in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze the information and interpret the data obtained by linking the subject he learned with practical reality.
- 3- Enabling the student to use the special and general equations of the subject and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems that fall on the shoulders of the engineer in the field.

10- STRUCTURE COURSE

ASSESSMENT	LEARNIN G	ОВЈЕСТ	REQUIRED OUTCOMES	HOUR	WEEK
		First-Order Differential Equations: Initial-value problem. Separable variables.		ŧ	First
		Homogeneous equations. Exact equations. Linear equations. Integrating factor.		ź	second
		Bernoulli equation. Applications. Second- Order Differential Equations: Initial-value and Boundary-value problems.		ź	third
		Linear differential operators. Reduction of order. Homogeneous equations with constant coefficients.		£	fourth
		Non-homogeneous equations. Method of undetermined coefficients. Method of variation of parameters.		ź	fifth
		Some nonlinear equations. Applications. Higher order Differential Equations.		٤	sixth
		Laplace Transforms: Definitions. Properties. Inverse Laplace transforms. Solving initial value problems.		ź	SEVENTH
		Special functions: Heavy side unit step function. Convolution theorem. System of Linear Differential Equations: Definitions. Elimination method.		ŧ	EIGHTH
		Application of Linear Algebra. Homogeneous linear systems. Non- homogeneous linear systems. Solving systems by Laplace transforms.		ź	NINETN
		1st Course Exam	1		

13- ACCEBTANCE				
Calculus1, calculus2,calculus3	Prerequisites			
1.	Minimum number of students			
٤٠	The largest number of students			

English Language-\

Course Description Form

Review The Performance of Higher Education Institutions ((Review of The Academic Program))

Study English-1 to help the student write and understand the topics and skills of the engineering field, in addition to developing ideas for how to write research and presentations

Educational Institution	University of Anbar/College of Engineering
University Department/Center	Dams & Water Resources Department
Course Name/Code	English Language- \
Program	Bachelor
Available Attendance Form	Full Time
Semester/Year	First Term/2022-2023
Number of Credit Hours	45
Date of Description Preparation	9/10/2021

Course Objectives:

- It is primary and prominent role in teaching the writing of structural pieces and simple research related to the field of study.
- Teach students to use their skills to use the electronic library and scientific research methods.
- Develop students' speaking and reading analysis skills in books and research articles.

Learning outcomes and teaching, learning and assessment methods

First: Cognitive Objectives:

- Learn about the style of talking to people .
- Develop the skill of scientific knowledge of engineering topics.
- Develop the skills of using methods to prevent the deprivation of intellectual rights.
- Active participation in the classroom and interaction with students.
- Learn about ways to use sources for research and scientific books.

Second: Course Skills Objectives:

- 1- Learn to use numbers and methods of writing them in English.
- 2 -Encouraging the student's skills to use source writing systems.
- 3 -Expanding academic vocabulary by writing topics that affect the field of study, which is engineering.
- 4 -Encouraging students to develop their academic ideas.
- 5- Develop the student's writing skills

Teaching And Learning Methods

- 1 -Providing students with the basics and topics related to previous education outcomes through recitation or lecture.
- 2 -Solving a set of examples by the groups of students and their participation in the solution.
- 3 -Expanding the discussion of speaking English with the participation of students .
- 4 -Sudden daily and continuous weekly tests .
- 5- Guiding students to some websites to benefit from them

Evaluation Methods

- 1. Evaluate students individually by giving an opportunity for classroom participation by answering questions.
- 2. Evaluating students collectively through daily exams with various questions that depend on the cognitive aspect of the student.
- 3. Evaluating students collectively by giving extracurricular duties such as writing simple essays.
- 4. Permanent monthly exams for students to evaluate their general performance and understanding of the material
- 5. Final exams for the first and second attempts.

Thinking Skills

- 1 -Knowing and studying how to use research writing methods and systems and using sources .
- 2- Encouraging the student to learn about entering electronic libraries

Teaching And Learning Methods

- Using modern means to display the scientific and theoretical side, such as Data Show devices to attract attention and attract students to better reach the idea to the student.
- Give students extracurricular assignments that require them to practice writing skills.
- Interrogate students through panel discussions by asking thinking questions (how, why, when, where, any) for specific topics.
- Linking the cognitive aspect with the student's knowledge reserve to develop speaking and writing skills.

Evaluation Methods

The evaluating according to:

7. Monthly Quizzes	20%
8. Quick Quizzes	10%
9. Assignments	5%
10. Attendance +Participations	5%
11.Final Exams	60%

General and transferable skills (other skills related to employability and personal development).

- 1 -Enabling students to master English 1 in the aspect of fluent speaking.
- 2-Developing the student's ability to write simple articles with the possibility of presenting them for discussion with students and teachers

Week	Hours	Required Learning Outcomes	Name of the Unit/Course or Topic	Method of Education	Evaluation Method
1	3	Student understands lesson	 Am/ are/ is, my/ your How are you? What's this in English? Plurals This is Good morning! Numbers 1-10 	Thermotical lecture	Discussion, quick exam, and home works
2	3	Student understands lesson	 Countries Where's he from? Numbers 11-30 He/ she/ they, his/ her Fantastic/ awful/ beautiful 	Thermotical lecture	Discussion, quick exam, and home works
3	3	Student understands lesson	 Jobs Am/are/is Negatives and questions Personal information Social expressions-1 	Thermotical lecture	Discussion, quick exam, and home works
4	3	Student understands lesson	 Our/ their Possessive's The family Has/ have The alphabet 	Thermotical lecture	Discussion, quick exam, and home works
5	3	Student understands lesson	 Sports/ food/ drinks Present simple- I/ you/ we/ they a/ an Language nationalities Numbers and prices 	Thermotical lecture	Discussion, quick exam, and home works
6	3	Student understands lesson	 The time Present simple- he/ she Always/ sometimes/ never Words that go together Days of the week 	Thermotical lecture	Discussion, quick exam, and home works
7	3	Student understands lesson	Question wordsMe/ him/ us/ themThis/ thatadjectivesCan I?	Thermotical lecture	Discussion, quick exam, and home works
8	3	Student understands lesson	Rooms and furnitureThere is/ arePrepositionsDirections	Thermotical lecture	Discussion, quick exam, and home works
9	3	Student understands lesson	Saying yearsPast simple- irregular verbsWhen's your birthday?	Thermotical lecture	Discussion, quick exam, and home works

10	3	Student understands lesson	As/ were bornHave/ do/ go	Thermotical lecture	Discussion, quick exam, and home works
11	3	Student understands lesson	Past simple- regular and irregularSport and leisure	Thermotical lecture	Discussion, quick exam, and home works
12	3	Student understands lesson	 Questions and negatives Going sightseeing	Thermotical lecture	Discussion, quick exam, and home works
13	3	Student understands lesson	Can/ can'tAdjective+ noun	Thermotical lecture	Discussion, quick exam, and home works
14	3	Student understands lesson	AdverbsEveryday problemsIn a restaurant	Thermotical lecture	Discussion, quick exam, and home works
15	3	Student understands lesson	I'd like- some/ anySigns all around	Thermotical lecture	Discussion, quick exam, and home works

Infrastructure	
References	John & Liz Soars, "New Headway intermediate- Student's Book", 10th ed 2014
Special Reequipments	
Social services (e.g. guest lectures, vocational training and field studies)	

Acceptance				
Prerequisites				
Minimum Students Numbers	40			
Maximum Students Number	57			

Design of Dams

Module Description Form

Module Information					
Module Title	Design of Dams			Module Delivery	
Module Type	Core			☑ Theory	
Module Code	DWE4302				
ECTS Credits	<u>3</u>		☐ Lab		
SWL (hr/sem)	<u>125</u>			□ Seminar	
Module Level 4 Semester of I		Delivery	1		
Administering Department Type Dept. Code College		College	Type College Code		

Module Leader	Rafid Saadoon l	Rashid	e-mail			
Module Leader's Acad. Title		Professor	Module Leader's Qualification Ph.D.		Ph.D.	
Co- Module Leader	Dr.Rafid Saadoon Rashid		e-mail	Rafid.alboresha@uoanbar.edu.iq		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/11/2021	Version Nur	nber	1.0	

Relation with other Modules			
Prerequisite modules	Fluid mechanics (DWE2304), Open Chanel (DWE2305), Engineering Hydrology (DWE3304) and Hydraulic Structures (DWE3306)		

Module	e Aims, Learning Outcomes and Indicative Contents
Module Objectives	The goals of this course are to enable students to: 1. To impart the principles of analysis, design, and behavior of dam and hydraulic structures belong to it. 2. To enable the student how to choose the suitable type of dams and how to select the perfect site to construct the dam. 3. Familiarity with professional and contemporary issues.
Module Learning Outcomes	By the end of successful completion of this course, the student will be able to: 1. The basics and consideration of dam design. 2. Understanding of the principles of hydrology for design. 3. Gain tools for planning, analysis and design for different types of dams, 4. Planning, analysis and design for spillways,
Indicative Contents	

Learning and Teaching Strategies				
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by			

considering types of simple experiments involving some sampling activities that are interesting to the students.

Module Evaluation

تقييم المادة الدراسية

		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #10, #11
Formative	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO #5, #8 and #10
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction: Important Terms for The main Parts of Dam, Planning Consideration, Classification of			
WCCK 1	Dams and Factors Governing Selection Site of Dams			
Week 2	Flood Hydrology for Design Purposes			
Week 3	Estimation of design flood			
Week 4	Gravity Dams - I			
Week 5	Gravity Dams - II			
Week 6	Exam1			
Week 7	Concrete Arch Dams - I			
Week 8	Concrete Arch Dams - II			
Week 9	Buttress Dams			
Week 10	Exam 2			
Week 11	Earth Dams - I			
Week 12	Earth Dams – II			
Week 13	Rock fill			
Week 14	Exam3			
Week 15	Preparatory week before the final Exam			

Learning and Teaching Resources				
	Text Available in the Library?			
Required Texts	Hydraulic Structures, P. Novak, A.I.B. Moffat and C. Nalluri School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, UK And R. Narayanan Formerly Department of Civil and Structural Engineering, UMIST, University of Manchester, UK Fourth edition published 2007 by Taylor & Francis Yes			
Recommended Texts				
Websites				

Grading Scheme						
Group	Grade		Marks %	Definition		
	A - Excellent		90 - 100	Outstanding Performance		
	B - Very Good		80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good		70 - 79	Sound work with notable errors		
(20 100)	D - Satisfactory		60 - 69	Fair but with major shortcomings		
	E - Sufficient		50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail		(45-49)	More work required but credit awarded		
	F – Fail		(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Environmental Engineering

Course description form

Reviewing the performance of higher education institutions (academic program review((

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE3308 Environmental Engineering	3. Course name/code
Engineering	4. The programs he participates in
electronic	5. Available forms of attendance
(theoretical)	6. Semester/year
Second semester 2021-2022	7. Number of study hours (total)
45 hours distributed as follows: 3 hours per	8. Date this description was
week	prepared

Course objectives:

- 1. Identify the quantity, quality, types and characterization of wastewater generated
- 2.To understand the properties and the design criteria of the conventional wastewater treatment plant (WWTP).
- 3. To learn the objectives and methods of sewage treatment and to study the features and function of different primary treatment units.
- 4. To study the features and function of different secondary treatment units.
- 5. To learn the objectives and methods of sewage disposal.
- 6. To learn the objectives and methods of sludge treatment.

9 .Learning outcomes and methods of teaching, learning and evaluation

A. Teaching and learning methods

\. Lectures

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	١
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	٥
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development.(
- 1. Ability to deal with work environment problems
- $^{\gamma}$. Correct investigation of problems and the ability to find solutions to them
- \u00e7. Evaluate, use, and improve work mechanisms
 \u00e4
 \u0
- ¿. Determine appropriate work standards
- 5 .Developing the spirit of cooperation and teamwork as one team

12.Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures	Wastewater treatment objective		3	,
Short exam + assignments + attendance and participation	Lectures	Sanitary sewage flow estimation		3	۲
Short exam + assignments + attendance and participation	Lectures	Characteristics and composition of sewage		3	٣
Short exam + assignments + attendance and participation	Lectures	Sewerage system		3	٤
Short exam + assignments + attendance and participation	Lectures	Types and method of wastewater treatment		3	0
Short exam + assignments + attendance and participation	Lectures	Primary treatment		3	٦
Short exam + assignments + attendance and participation	Lectures	Screens		3	٧
Short exam + assignments + attendance and participation	Lectures	Grit chamber		3	٨
Short exam + assignments + attendance and participation	Lectures	Primary sedimentation tanks		3	٩
Short exam + assignments + attendance and participation	Lectures	Secondary Treatment of Sewage		3	١.
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	11
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	17
Short exam + assignments +	Lectures	Trickling filter		3	١٣

attendance and participation				
Short exam + assignments + attendance and participation	Lectures	Sludge treatment	3	١٤
Short exam + assignments + attendance and participation	Lectures	Advanced treatment	3	10

11 .Infrastructure		
Reference name WATER SUPPLY AND SEWERAGE,, FIFTH Edition	Author name E.W.STEEL & TERENCE J .MCGHEE	Required readings:
		Social services (including, for example, guest lectures, vocational training, and field studies(

12.Acceptance	
	Prerequisites
	The smallest number of students
	The largest number of students

Engineering Management

Course Discription

One of the important academic subjects for engineering students of all specializations. The study of this subject aims to teach the student the basic principles of planning in construction projects, as studying the main project management skills, project scheduling, critical path, durations, and engineering logic for implementing project sections, in addition to resource management, cost calculations, and contract details. Typical construction projects and referral methods.

The student then can learn about project planning, focusing on legal aspects, cash flows, Direct and indirect costs, agreements, cost control, and linear programming as appropriate in civil engineering projects.

	-		
1. Educational institution	Anbar University/College of Engineering		
2. University department/center	Department of Dams and Water Resources Engineering		
3. Course name/code	Engineering Management/DWE3319		
4. Programs in which it is included	Bachelor's degree		
5. Available forms of attendance	Official working hours		
6. Semester/year	First semester/ 2021-2022		
7. Number of study hours (total)	45		
8. The date this description was prepared	22 September 2022		

9. Course objectives:

- a. Knowledge and understanding of the concepts of engineering management and construction project management.
- b. Introducing the types of construction projects and the different project stages from the initial studies stage until operation and maintenance, highlighting the various parties involved in the project and the functions and responsibilities of each of these parties.
- c. Learn and understand the methods of planning and scheduling projects by studying and analyzing the path of design, implementation, resource planning, allocation and control through the various stages that the project passes through.
- **d.** Providing an overview of techniques for improving methods of managing and implementing construction projects.

10. Learning outcomes, teaching, learning and assessment methods:

First: Knowledge and understanding:

- 1. The student knows engineering management and its importance in the labor market.
- 2. The student determines the division of basic tasks and functions at the work site.
- 3. The student knows the role of the project manager and what other basic roles he performs at the work site, noting the importance of acquiring skills and practical experience.
- 4. That the student understands the nature of the relationship and interrelationship between the different specializations in engineering work and their practical role, and that the student understands the roles of participants in engineering work.

Second: Course-specific skills:

- 1. Developing the student's particular engineering and construction management skills and preparing him scientifically to be a site engineer and a successful project manager.
- 2. Developing the skills of planning, organizing, directing and controlling as they are the basics of good engineering management.
- 3. Developing the student's skill of making appropriate decisions and time management as it is the essence of engineering work management.

a. Teaching and learning methods:

- 1. Explaining and clarifying the basics in engineering and construction management in particular and topics related to educational outcomes through delivery, lecture and discussion.
- 2. Solving a group of applied examples by the subject teacher, with students participating by solving some examples and applied questions.
- 3. Continuous daily and weekly surprise tests and directing the student to prepare reports on construction management vocabulary and the sequence of logical work paragraphs to expand his understanding of the subject.
- 4. Directing students to some websites to benefit from them.

b.Evaluation methods:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with questions related to the daily and previous subjects.
- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 4- Monthly exams during the semester for students to evaluate their general performance and understanding of the subject.
- 5- Final exams for the first and second round.

c.Third: Thinking skills:

- 1. Critical thinking (question and answer).
- 2. Interaction skill
- **3.** Approximate practical examples and try to determine the extent of their compatibility with the situations that the engineer may encounter during the work.

d.Teaching and learning methods:

- 1. Use ordinary means, such as the blackboard, and modern means, such as Data Show devices, to present lectures to attract attention and attract students so that the idea is better conveyed to the student.
- 2. Interrogating students through discussion sessions by asking intellectual questions.

3. Using the method of linking the subjects taken in the previous academic stages, while giving examples related to the practice of their specialization to provide them with practical skills to benefit from them in the future.

e.Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam: 60%

f.General and transferable skills (other skills related to employability and personal development):

1- Engineering work management skill.

2- The skill of linking scientific planning with practical.

3- The skill of learning to use accumulated experiences in decision-making.

11. Infrastructure :		
. Required readings: Course books Other	Colorado State U John Wiley & So Clifford J. Schex	nPurdue,University,Bolivar A. Senior University, Construction Management, ons, Inc. 4th ed., 2011 knayder, Richard E. Mayo, Construction damentals, McGraw-Hill, 2nd ed., 2008
Special requirements Social services (including, for example, guest lectures, vocational training, and field studies)		Non
Social services (including, for example, guest lectures, vocational training, and field studies)		Scientific trips to project sites

12. Course str	12. Course structure:				
Evaluation method	Teaching method	outcomes Name of unit/course or subject	Required learning	Hours	Week
Discussion, problem solving, homework	Theoretical	Construction Technology and Construction	Building technology and construction	3	First.
Discussion, quick exam, problem solving	Theoretical	Construction Industry	Construction industry	٣	Second.
Discussion, homework	Theoretical	Construction planning and scheduling	Methods of planning construction projects	٣	Third.
Discussion, quick quiz	Theoretical	Gantt chart and Activity Precedence Diagrams	Gantt chart	٣	Fourth.
Discuss, solve problems	Theoretical	Program evaluation & review technique	PERT method	٣	Fifth.
discussion	Theoretical	Progress reporting	Work progress reports	٣	Sixth.
	Theoretical	Monthly exam	Monthly exam	٣	Seventh.
Discussing problem solving, homework	Theoretical	Line of Balance Applied to Construction	Balance line method	٣	Eighth.
Discussion, quick exam, problem solving	Theoretical	Work Breakdown Structure	Business distribution structure	٣	Ninth.
Discuss your homework	Theoretical	Earned Value Method	Earned value method	٣	Tenth.
Discussion, quick quiz	Theoretical	Major Construction Contract Types	Main types of construction contracts	٣	Eleventh.
Discussion, quick quiz	Theoretical	Project Delivery Methods	Project delivery methods	٣	Twelfth.
Discuss, solve problems	Theoretical	Project Cost Control Systems.	Project cost control systems	٣	Thirteent
discussion,	Theoretical	Value Engineering	Value Engineering	٣	Fourteen
Discuss, solve problems	Theoretical	Resource Planning& Allocation, Value Engineering Optimization techniques	Resource planning and allocation	٣	Fifteenth
1st Course Exam				٣	Sixteenth

13. Acceptance:	
Prerequisites	Engineering Statistics,
	Computer Science
The smallest number of students	1.
The largest number of students	٤٠

((Engineering Optimization))

Course description

Engineering optimization				
Planning and management issues; institutional objectives and constraints;				
identifying and evaluating design and management alternatives; role of				
modeling and its advantages and limitations.				
Optimization Modeling: Examples illustrating various types of models,				
solution methods and applications to water resources infrastructure planning				
and management.				
Stochastic Optimization Methods applied to hydrologic and water resource				
systems.				
Methods for Multiple-purpose River Basin Planning.				

Anbar University/ College of Engineering		
Department of Dams and Water		
Resources Engineering		
Engineering Optimization / DWE4307		
Bachelor's		
Official working hours		
First semester/ fourth academic year		
٦.		
Y.Y_9_Y <i>o</i>		

9. Course objectives

- A- The student understands the science of optimization Because he one Scientific and applied foundations For dam and water resources engineering.
- B- It has an important role in increasing the student's intellectual awareness of dealing with engineering problems and achieving solutions for this problems.

C- Its basic and prominent role in the design of buildings and facilities is related to irrigation and damengineering.

10. Learning outcomes and methods of teaching, learning and evaluation

First: Cognitive objectives

- This course will provide the student an introduction to the planning, design, and operation of water resources systems using mathematical optimization methods and models. The student will learn to apply basic economic analysis and operations research techniques (linear programming, and combinational optimization) and will apply them to the various surface and groundwater resource allocation problems.
- Be able to develop and solve various types of optimization models of water resources planning and management problems.
- Understand the advantages and limitations of various types of modeling methods and algorithms.
- Understand and appreciate how models have been and can be used in planning and management decision-making processes.
- Understand and critically evaluate literature in water resources systems engineering.

Second: Skills objectives of the course

- 1. A detailed study of the science of geometric optimization.
- 2. Teach the student after the end of the semester the effect of engineering optimization in making engineering decisions
- 3. Engineering preparation to be a successful engineer by learning the correct principles of hisspecialty.

A- Teaching and learning methods

- 1- Providing students with the basics and topics related to previous educational ,outcomes and the skills to solve practical problems through speech, lecture .or presentations
- 2- .Solving a group of practical and applied examples by the subject teacher
- 3- Through discussion, students participate in solving some practical .problems.
- 4- .Daily surprise and continuous weekly tests
- 5- Directing students to some websites to benefit from them.

: B- Evaluation methods

Evaluating students individually by giving them an opportunity to participate -\(^1\) .in the class by answering questions

Evaluating students collectively through daily exams with practical and -7 .theoretical questions

Evaluating students collectively by giving extracurricular assignments, such - **. as writing reports or doing assignments

Permanent monthly exams for students to evaluate their general performance -2 and understanding of the subject

.Final exams for the first and second round -o

C- Thinking skills:

- 1- Knowing and studying how to analyze the forces affecting objects and linking them to reality to direct the student's thought towards practical life.
- 2- Analyze the results of solving problems and compare them mentally with reality and the extent of their conformity with the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

D- Teaching and learning methods:

1- Using modern means to present the scientific and theoretical aspect, such

asData Show devices to attract attention and attract students so that the,

idea reaches the student better.

2- Giving students extra-curricular assignments that require them to exert

.skills and self-explanations in experimental ways

3- Interrogating students through discussion sessions by asking intellectual

questions such as: (how, why, when, where, which) for specific topics.

4- Using the method of brainstorming and mental nutrition in order to

activate the accumulated experiences of students by linking the subjects

taken in the pre-university educational levels and linking them to the new

ones.

5- Providing students with practical skills by linking their studies to

practical reality.

E- Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%

2- Daily exams: 10%

3- Project: 10%

4- Final exam: 60%

F - General and transferable skills (other skills related to employability

and personal development):

- 1- Enabling students to study engineering optimization in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze information and interpret the .data he obtained by linking the subject he learned with practical reality
- 3- Enabling the student to use special and general equations and how to .benefit from them in analyzing problems and extracting results accurately
- 4- Enabling the student to conduct a field survey to identify the problems .facing the engineer in the field

: Course structure - \ \

the week	hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluation method
First	٣	Cognitive objectives	Introduction	theoretical	Discussion, quick exar problem solving, homew
Second	٣	Cognitive objectives	Modeling with Linear Programming	theoretical	Discussion, quick exar problem solving, homew
Third	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exar problem solving, homew
Fourth	٣	Cognitive objectives	Graphical method	theoretical	Discussion, quick exar problem solving, homew
Fifth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homework
VI	٣	Cognitive objectives	The Simplex Method	theoretical	Discussion, quick exam problem solving, homewo
Seventh	٣	Cognitive objectives	Two-phase method	theoretical	Discussion, quick exam problem solving, homewo
VIII	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homework
Ninth	٣	Cognitive objectives	The Dual Simplex Method	theoretical	Discussion, quick exam problem solving, homewo
The tenth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homewo
eleventh	٣	Course-specific skills objectives	Quiz	theoretical	Discussion, quick exam problem solving, homewo
twelveth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homewo

					diagnasian anials area
Thirteenth	٣	Cognitive objectives	Big-M method	theoretical	, discussion, quick exa
Timtoontii		Cogmuve cojecuves	Big ivi inculou	theoretical	Problem solving, homew
0	ш	a	Duality and		, discussion, quick exa
fourteenth	7	Cognitive objectives	Sensitivity Analysis	theoretical	Problem solving, homew
			Sensitivity Analysis		Problem solving, nomew
Fifteenth	٣	Cognitive objectives	THE REVISED SIMPLEX METHOD	theoretical	, discussion, quick exa Problem solving, homew
sixteen	٣	Review			

: Infrastructure - ۱۲				
:Required readings	 Loucks DP and Beek EV (2005) Water Resources Systems Planning and Management.			
Special requirements	nothing			
Social services (including, for ,example, guest lectures vocational training, and field (studies	nothing			

: Acceptance - \ T		
Prerequisites	- \ Engineering Statistics - \ Engineering Numerical Methods	
The smallest number of students	1.	
The largest number of students	٤٠	

((Engineering Optimization))

Course description

Engineering optimization			
Planning and management issues; institutional objectives and constraints;			
identifying and evaluating design and management alternatives; role of			
modeling and its advantages and limitations.			
Optimization Modeling: Examples illustrating various types of models,			
solution methods and applications to water resources infrastructure planning			
and management.			
Stochastic Optimization Methods applied to hydrologic and water resource			
systems.			
Methods for Multiple-purpose River Basin Planning.			

11. Educational institution	Anbar University/ College of Engineering
12. University	Department of Dams and Water
department/center	Resources Engineering
13. Course name/code	Engineering Optimization / DWE4307
14. The programs in which he participates	Bachelor's
15. Available forms of attendance	Official working hours
16. Semester/year	First semester/ fourth academic year
17. Number of study hours (total)	٦.
18. The date this description was prepared	Y • Y 1_9_Y 0

19. Course objectives

- A- The student understands the science of optimization Because he one Scientific and applied foundations For dam and water resources engineering.
- B- It has an important role in increasing the student's intellectual awareness of dealing with engineering problems and achieving solutions for this problems.

C- Its basic and prominent role in the design of buildings and facilities is related to irrigation and damengineering.

20. Learning outcomes and methods of teaching, learning and evaluation

First: Cognitive objectives

- This course will provide the student an introduction to the planning, design, and operation of water resources systems using mathematical optimization methods and models. The student will learn to apply basic economic analysis and operations research techniques (linear programming, and combinational optimization) and will apply them to the various surface and groundwater resource allocation problems.
- Be able to develop and solve various types of optimization models of water resources planning and management problems.
- Understand the advantages and limitations of various types of modeling methods and algorithms.
- Understand and appreciate how models have been and can be used in planning and management decision-making processes.
- Understand and critically evaluate literature in water resources systems engineering.

Second: Skills objectives of the course

- 4. A detailed study of the science of geometric optimization.
- 5. Teach the student after the end of the semester the effect of engineering optimization in making engineering decisions
- 6. Engineering preparation to be a successful engineer by learning the correct principles of hisspecialty.

A- Teaching and learning methods

- 1- Providing students with the basics and topics related to previous educational ,outcomes and the skills to solve practical problems through speech, lecture .or presentations
- 2- .Solving a group of practical and applied examples by the subject teacher
- 3- Through discussion, students participate in solving some practical .problems.
- 4- .Daily surprise and continuous weekly tests
- 5- Directing students to some websites to benefit from them.

: B- Evaluation methods

Evaluating students individually by giving them an opportunity to participate -\(^1\) .in the class by answering questions

Evaluating students collectively through daily exams with practical and -7 .theoretical questions

Evaluating students collectively by giving extracurricular assignments, such - **. as writing reports or doing assignments

Permanent monthly exams for students to evaluate their general performance -2 and understanding of the subject

.Final exams for the first and second round -o

C- Thinking skills:

- 5- Knowing and studying how to analyze the forces affecting objects and linking them to reality to direct the student's thought towards practical life.
- 6- Analyze the results of solving problems and compare them mentally with reality and the extent of their conformity with the actual design values.
- 7- Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

D- Teaching and learning methods:

6- Using modern means to present the scientific and theoretical aspect, such

asData Show devices to attract attention and attract students so that the,

idea reaches the student better.

7- Giving students extra-curricular assignments that require them to exert

.skills and self-explanations in experimental ways

8- Interrogating students through discussion sessions by asking intellectual

questions such as: (how, why, when, where, which) for specific topics.

9- Using the method of brainstorming and mental nutrition in order to

activate the accumulated experiences of students by linking the subjects

taken in the pre-university educational levels and linking them to the new

ones.

10-Providing students with practical skills by linking their studies to

practical reality.

E- Evaluation methods:

The evaluation is done on the basis of:

5- Monthly exams: 20%

6- Daily exams: 10%

7- Project: 10%

8- Final exam: 60%

F - General and transferable skills (other skills related to employability

and personal development):

- 2- Enabling students to study engineering optimization in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze information and interpret the .data he obtained by linking the subject he learned with practical reality
- 3- Enabling the student to use special and general equations and how to benefit from them in analyzing problems and extracting results accurately
- 8- Enabling the student to conduct a field survey to identify the problems .facing the engineer in the field

: Course structure - \ \

the week	hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluation method
First	٣	Cognitive objectives	Introduction	theoretical	Discussion, quick exar problem solving, homew
Second	٣	Cognitive objectives	Modeling with Linear Programming	theoretical	Discussion, quick exar problem solving, homew
Third	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exar problem solving, homew
Fourth	٣	Cognitive objectives	Graphical method	theoretical	Discussion, quick exar problem solving, homew
Fifth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homework
VI	٣	Cognitive objectives	The Simplex Method	theoretical	Discussion, quick exam problem solving, homewo
Seventh	٣	Cognitive objectives	Two-phase method	theoretical	Discussion, quick exam problem solving, homework
VIII	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homework
Ninth	٣	Cognitive objectives	The Dual Simplex Method	theoretical	Discussion, quick exam problem solving, homework
The tenth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homewo
eleventh	٣	Course-specific skills objectives	Quiz	theoretical	Discussion, quick exam problem solving, homewo
twelveth	٣	Course-specific skills objectives	Tutorials	theoretical	Discussion, quick exam problem solving, homewo

					diagnasian anials area
Thirteenth	٣	Cognitive objectives	Big-M method	theoretical	, discussion, quick exa
Timtoontii					Problem solving, homew
0	ш	a	Duality and		, discussion, quick exa
fourteenth	7	Cognitive objectives	Sensitivity Analysis	theoretical	Problem solving, homew
			Sensitivity Analysis		Problem solving, nomew
Fifteenth	٣	Cognitive objectives	THE REVISED SIMPLEX METHOD	theoretical	, discussion, quick exa Problem solving, homew
sixteen	٣	Review			

: Infrastructure - ۱۲			
:Required readings	 Loucks DP and Beek EV (2005) Water Resources Systems Planning and Management.		
Special requirements	nothing		
Social services (including, for ,example, guest lectures vocational training, and field (studies	nothing		

: Acceptance - \ T		
Prerequisites	- \ Engineering Statistics - \ Engineering Numerical Methods	
The smallest number of students	١.	
The largest number of students	٤٠	

Engineering Statistics

Course Discription

It is one of the important academic subjects for engineering students of all specializations, as it is a combination of applied engineering and statistics, and it teaches the student statistical methods and tools to solve important problems and also the use of statistical models in order to solve scientific and engineering problems for the purpose of improving the process or product, by teaching him to classify data. Its representation and description, probability theory, probability distributions, independent events, variables, covariance, correlation, hypothesis testing for one sample, and others.

1 Educational institution	Anbar University/College of Engineering
2 University department/center	Department of Dams and Water Resources Engineering
3 Course name/code	Engineering Statistics / DWE3212
4 Programs in which it is included	Bachelor's degree
5 Available forms of attendance	Official working hours
6 Semester/year	Second semester/ 2022-2023
7 Number of study hours (total)	45
8 The date this description was prepared	29 January 2022

9 Course objectives:

- A- Teaching the student to classify data, graphical representation, and mathematical description of it.
- B- Probability theory, its rules, random variables, and probability distributions.
- C- Random variables, normal distribution, independence of random variables, and their statistical details.
- D- Increasing the student's intellectual awareness to deal with recurring engineering problems facing his work and devising solutions by benefiting from the repetition of these problems.

10 Learning outcomes, teaching, learning and assessment methods:

First: Knowledge and understanding:

- 1. Differentiating between a random process and a deterministic process, dealing with data samples and analyzing them using several metrics and presenting them graphically.
- 2. Learn about probability theory and its applications, and dealing with discrete and continuous random variables.
- 3. Linking the normal distribution with the statistical sample population in practice and designing good estimates for different criteria for different statistical populations.

Second: Course-specific skills:

- 1. Judging statistical hypotheses by conducting statistical tests using different significance levels.
- 2. Use statistical software (Excel, Mat lab, or any other appropriate program) for statistical analysis.
- 3. Preparing the student to be a successful engineer by learning the correct principles for using statistics in his specialty.

a. Teaching and learning methods:

- 1. 1. Explaining and clarifying the basics in statistics and topics related to educational outcomes through delivery, lecture, and discussion.
- 2. Solving a group of applied examples by the subject teacher, with students participating by solving some examples and applied questions.
- 3. Continuous daily and weekly surprise tests and directing the student to prepare reports on statistics to expand his understanding of the subject.
- 4. Directing students to some websites to benefit from them.

b.Evaluation methods:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with questions related to the daily and previous subjects.
- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 4- Monthly exams during the semester for students to evaluate their general performance and understanding of the subject.
- 5- Final exams for the first and second round.

c. Thinking skills:

- 1. Knowing and studying how to analyze and arrange data to reach useful inferences from it.
- 2. Analyzing the results of solving problems and comparing them with the results of different examples and intellectually analyzing the results of difference or convergence in them.
- 3. Bringing the examples closer to the community and trying to determine the extent of their compatibility with the situations that an engineer may encounter during his work.

d. Teaching and learning methods:

- 1. Use ordinary means, such as the blackboard, and modern means, such as Data Show devices, to present lectures to attract attention and attract students so that the idea is better conveyed to the student.
- 2. Guiding and giving students extracurricular assignments for the purpose of making them familiar with methods of collecting and arranging information.
- 3. Interrogating students through discussion sessions by asking intellectual questions.

4. Using the method of linking the subjects taken in the previous academic stages, while giving examples related to the practice of their specialization to provide them with practical skills to benefit from them in the future.

e.Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam: 60%

f.General and transferable skills (other skills related to employability and personal development):

- 1- Enabling students to master the subject in its applied and cognitive aspects.
- 2- Enabling the student to collect and classify data and how to benefit from it in statistical analysis and extracting results.
- 3- Developing the student's ability to analyze information and interpret the data he obtains by linking the subject he has learned with practical reality

11 Course structure:

Evaluation method	Teaching method	outcomes Name of unit/course or subject	Required learning	Hours	Week
Discussion, quick exam, problem solving, homework	Theoretical	Introduction, Data Summary and Presentation	Introduction, data summary and presentation	3	Seventeen
Discussion, quick exam, problem solving, homework	Theoretical	Probability: Addition rule, conditional probability, multiplication rule and Bayes Theorem.	Probability: addition rule, conditional probability, multiplication rule, Bayes' theorem.	٣	Eighteentl
Discussion, quick exam, problem solving, homework	Theoretical	Discrete random variables. Probability mass function. Mean and variance of discrete random variables.	Discrete random variables. Probabilistic mass function. The mean and variance of discrete random variables.	٣	Nineteentl
Discussion, quick exam, problem solving, homework	Theoretical	Probability Distribution functions: Uniform, Binomial, Geometric and Negative Binomial, Hyper-geometric and Poisson Distribution.	Probability distribution functions: regular binomials	٣	Twentieth
Discussion, quick exam, problem solving, homework	Theoretical	Continuous random variables. Probability Density functions.	Geometric binomial	٣	Twenty-fir
Discussion, quick exam, problem solving, homework	Theoretical	Normal Distribution. Approximation to Binomial and Poisson Distribution.	Poisson distribution.	٣	Twenty-se
Discussion, quick exam, problem solving, homework	Theoretical	Monthly exam	Continuous random variables. Probability density function	٣	Twenty-th
Discussion, quick exam, problem solving, homework	Theoretical	Exponential distribution. Other continuous distributions.	Normal distribution. Binomial approximation and Poisson distribution.	٣	Twenty-fo
Discussion, quick exam, problem solving, homework	Theoretical	Joint probability function. Multiple discrete and continuous random variables.	Monthly exam	٣	Twenty-fif
Discussion, quick exam, problem solving, homework	Theoretical	Covariance and correlation. Bivariate Normal Distribution. Linear combination of random variables. Functions of random variables.	Exponential distribution.	٣	Twenty-siz
Discussion, quick exam, problem solving, homework	Theoretical	Parameter estimation. Properties of estimators. Method of Moments.	Other ongoing distributions.	٣	Twenty-se
Discussion, quick exam, problem solving, homework	Theoretical	Method of Maximum likelihood.	Joint probability. Multiple discrete and continuous random variables.	٣	Twenty-eig
Discussion, quick exam, problem solving, homework	Theoretical	Interval estimation. Inference on the mean of a population: variance known or unknown. Inference on the variance of a normal population	Covariance and correlation.	٣	Twenty-ni
Discussion, quick exam, problem solving, homework	Theoretical	Hypothesis testing about the mean and Proportion: Small and Large Sample	Bivariate normal distribution.	٣	Thirtieth.
Discussion, quick exam, problem solving, homework	Theoretical	Hypothesis testing: Two Populations	A linear combination of random variables.	٣	Thirty-firs
2nd Course Exam				٣	Thirty-sec

12 Acceptance:	
Prerequisites	Calculus-II
The smallest number of students	1.
The largest number of students	٤٠

13 Infrastructure :		
. Required readings: Course books Other	•William Mendenhall and Terry Sincich, Statistics for Engineering and the Sciences, Prentice Hall, 5th ed., 2007	
Special requirements Social services (including, for example, guest lectures, vocational training, and field studies(Non
Social services (including, for example, guest lectures, vocational training, and field studies)	Non	

Fundamentals of Electrical Engineering

Module Description Form

	Module Information معلومات المادة الدراسية				
Module Title Fundamentals of Electrical Engineering		Module Delivery			
Module Type	<u>Core</u>			☑ Theory	
Module Code DWE1212		⊠ Lecture ⊠ Lab			
ECTS Credits	ECTS Credits <u>5</u>		☐ Tutorial ☐ Practical		
SWL (hr/sem)	r/sem) <u>125</u>			□ Seminar	
Module Level 1 Seme		Semester of	Delivery	1	
Administering Department DWE		DWE	College	ENG	

Module Leader	Ahmed Shakir Abdullah		e-mail	Ahmed.s.abd@uoanbar.edu.iq		ı.iq
Module Leader's Acad. Title Lecturer		Module Leader's Qualification Ph.D.		Ph.D.		
Module Tutor			e-mail			
Peer Reviewer Name		Name	e-mail			
Scientific Committee Approval Date		04/10/2023	Version Nur	nber	1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	DWE1201 CALCULUS I	Semester		
Co-requisites module	None	Semester		

Module	Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives أهداف المادة الدراسية	 To develop problem solving skills and understanding the fundamentals of electrical engineering through the application of techniques. To be able to solve series and parallel DC circuit. To be able to understand Ohms Kirchhoff's current and voltage Laws problems. To be able to analyze Nodal analysis, Mesh analysis, Source transformation. To perform mesh and Nodal analysis. To be able to analyze R, L, C circuit. 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Understand the basic concept of electrical circuits. Solve series and parallel DC circuits. Apply Sources in Series and Parallel Voltage Divider Rule-Current Divider Rule Transform circuit from Wye-Delta and visa-versa. Solve Circuit Analysis Techniques (Nodal Analysis, Mesh Analysis, and Superposition). Apply Thevenin's and Norton's Equivalent Circuits. 				
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. Introduction to electrical engineering, Charge, current, and voltage.[12h] Ohms law, Kirchhoff laws, Star delta analysis. [15h] Nodal analysis, Mesh analysis, Source transformation. [18h] Superposition theorem, Thevenin circuits, Norton circuits.[18h] Capacitor C, Inductor L, Circuit analysis including R, L, and C.[15h]				

Learning and Teaching Strategies		
	استر اتيجيات التعلم والتعليم	
Strategies		

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا			
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل			
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	47	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	3.13
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	125		

Module	Evaluation
--------	-------------------

تقييم المادة الدراسية

سييم العداد العراسي					
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #3, #4
Formative	Assignments	2	10% (10)	2 and 12	LO #3, #4
assessment	Projects / Lab.	1	5% (5)	Continuous	All
	Report	1	5% (5)	13	LO #3, #4
Summative	Midterm Exam	2hr	20% (20)	7	LO #1 - #4
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)		
المنهاج الاسبوعي النظري			
	Material Covered		
Week 1	Introduction to electrical engineering		
Week 2	Charge, current, and voltage		
Week 3	Ohms law		
Week 4	Ohms law		
Week 5	Kirchhoff laws		

Week 6	Kirchhoff laws
Week 7	Mid-term Exam + Unit-Step Forcing, Forced Response, the RLC Circuit
Week 8	Star delta analysis
Week 9	Nodal analysis
Week 10	Nodal analysis
Week 11	Mesh analysis
Week 12	Source transformation
Week 13	Superposition theorem
Week 14	Thevenin circuits
Week 15	Norton circuits
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر			
Material Covered			
Week 1	Lab 1: Charge, current, and voltage		
Week 2	Lab 2: Ohms law		
Week 3	Lab 3: Kirchhoff laws		
Week 4	Lab 4: Star delta analysis		
Week 5	Lab 5: Nodal analysis		
Week 6	Lab 6: Mesh analysis		
Week 7	Lab 7: Superposition theorem		

	Learning and Teaching Resources مصادر التعلم والتدريس					
	Text Available in the Library?					
Required Texts	Alexander and Sadiku "Fundamentals of Electric Circuits" Third	YES				
Required Texts	Edition McGraw Hill.	ILS				
Recommended	Recommended Boylestad, R. L., Introductory Circuit Analysis (10th Edition).					
Texts		YES				
Websites						

Grading Scheme مخطط الدر جات						
Group	Group Grade التقدير Marks % Definition					
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
(50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		

	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Hydraulic Structures

Module Information معلومات المادة الدراسية					
Module Title	<u>Hydraulic</u>	Structures		Module Delivery	
Module Type	<u>Core</u>			☑ Theory	
Module Code	DWE3321			⊠ Lecture ⊠ Lab	
ECTS Credits	<u>5</u>			☐ Tutorial☐ Practical	
SWL (hr/sem)	<u>125</u>			□ Seminar	
Module Level		UGIII	Semester of Delivery 6		6
Administering Depa	artment	DWE	College	ENG	
Module Leader	Dr. Mohammed	Falah Allawi	e-mail	Mohammed.falah@uoanab	r.edu.iq
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification Ph.D.		Ph.D.
Module Tutor Dr. Mohammed Falah Allawi		Falah Allawi	e-mail Mohammed.falah@uoanabr.edu.iq		r.edu.iq
Peer Reviewer Name			e-mail		
Scientific Committee Approval Date		01/06/2022	Version Nun	aber 1.0	

Relation with other Modules							
	العلاقة مع المواد الدراسية الأخرى						
Prerequisite module	DWE 2304 Fluid mechanics DWE 2305 Open channels	Semester	3,4				
Co-requisites module	None	Semester					

Module	Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Objectives 11. To develop an understanding of the principles of using hydraulic structures measurement structures. 12. To develop an understanding of the principles of design of different hydraulic (weirs, culverts, intake and outwork structures spillways, and energy dissipation). 13. This course deals with the basic concept of hydraulic structures.						
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	By the end of successful completion of this course, the student will be able to: 1. Ability to identify the types of hydraulic structures. 2. Ability to identify the principals of design in hydraulic structures. 3. Ability to identify the energy and specific energy in open channel. 4. Ability to analyze the problems of regulators and weirs flow and design open channel. 5. Ability to solve analysis and design problems related to bed material. The student will be able to design the culverts. 6. The student will be able to determine the up-lift pressure under the hydraulic structures.					
Indicative Contents المحتويات الإرشادية	Introduction, Principles of Hydraulic Systems Analysis, Classification of Structures for Flow Control, Design of floors by bligh theory, Design of floors by lianas theory. (15 hrs). Introduction of Channel Regulating Structures (weirs, barrages, sluice gates, etc.), Quiz with resolve problems and discussion weirs, weirs (Tutorial (examples), Design of sluice gates. (15 hrs). Channel Intake and Outlet (Diversion) Structures, Flow Measurement Structures, Dam Spillways and Outlet Works, Energy Dissipation Structures, Design of sittling basin, Culverts. (15 hrs).					

Learning and Teaching Strategies استراتیجیات التعلم والتعلیم					
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.				

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا					
Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبو عيا الحمل الدراسي المنتظم للطالب خلال الفصل					
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.2		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		125			

Module Evaluation
تقييم المادة الدراسية

		Time/Number	Weight (Marks)	Week Due	Relevant Learning
		Time/1(dilloci		Week Due	Outcome
	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #10, #11
Formative	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO #5, #8 and #10
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

	Delivery Plan (Weekly Syllabus)		
	المنهاج الاسبوعي النظري		
	Material Covered		
Week 1	Introduction		
Week 2	Principles of Hydraulic Systems Analysis		
Week 3	Classification of Structures for Flow Control		
Week 4	Design of floors by bligh theory		
Week 5	Design of floors by lianas theory		
Week 6	Introduction of Channel Regulating Structures (weirs, barrages, sluice gates, etc.)		
Week 7	Quiz with resolve problems and discussion		
Week 8	weirs		
Week 9	weirs (Tutorial (examples)		
Week 10	Design of sluice gates		
Week 11	Channel Intake and Outlet (Diversion) Structures		
Week 12	Flow Measurement Structures		

Week 13	Dam Spillways and Outlet Works
Week 14	Energy Dissipation Structures
Week 15	Design of sittling basin
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)		
المنهاج الاسبوعي للمختبر		
	Material Covered	
Week 1	Lab 1: Introduction	
Week 2	Lab 2: Discharge Estimation	
Week 3	Lab 3: Seepage Estimation	
Week 4	Lab 4: Head Pressure Calculation	
Week 5	Lab 5: Hydraulic Jump	
Week 6	Lab 6: Water Depth Calculation	
Week 7	Lab 7: Exam	

Learning and Teaching Resources مصادر التعلم والتدريس				
Text Available in the Library?				
Required Texts	Textbook(s): open channel hydraulics - chow	Yes		
Recommended Texts	Hydraulic Structures: Fourth Edition	Yes		
Websites	https://heidarpour.iut.ac.ir/sites/heidarpour.iut.ac.ir/files/u32/open-chow.pdf http://www.khuisf.ac.ir/Dorsapax/Data/Sub_118/File/Hydraulic%20Structures_4th%20editionpdf			

Grading Scheme مخطط الدر جات					
Group	Definition				
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
_	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Management and leadership skills

This course is designed for engineering students interested in advancing in managerial and leadership roles. The student will gain perspective on what it means to be an engineering leader. The course is concerned with developing awareness of your strengths and weaknesses as a leader when you are assigned to be in charge of a project and you will learn how to take advantage of your strengths and control your weaknesses. You will also learn how to manage relationships with your team members and how to set up a creative environment for your team to motivate each team member to reach their potential. You will also learn how to deal with various ethical issues related to engineering work.

1 Educational institution	Anbar University			
2 University Department / Center	Faculty of Engineering			
3 Course Name/Code	Management and leadership skills			
4 Programs in which he enters	Dams and Water Resources Engineering			
5 Available Attendance Forms	SID.ir			
6 Semester / Year	2021-2022			
7 Number of Credit Hours (Total)	28			
8 The history of preparation of this description	30-9-2021			
9 Course Objectives:				

- 1- Understand the principles of leadership skills
- 2. Understand the practical applications of leadership skills

Learning outcomes and teaching, learning and assessment methods

- A. Knowledge and understanding
- 1. Explain the basic concepts of leadership.
- 2. Build power and influence.
- 3. Add value to their sphere of influence
- 4. Give and receive feedback, actively listen, provide supportive communication, and coach and counsel their team members.

B- Subject-specific skills

Teaching and learning methods

Lectures, presentations, questions

Evaluation methods

The evaluation is carried out on the basis of:

- 1- Monthly exams 20%
- 2- Daily exams 10%
- 3- Duties 5%
- 4- Attendance + daily participation 5%
- 4- Final exam 50%
 - C- Thinking skills

Teaching and learning methods

Evaluation methods

D - General and transferred skills (other skills related to employability and personal development).

Course Structure

The week	Hours	Required Learning Outcomes	Name of the unit/course or topic	Method of education	Evaluation method
1,2	4	Explain the basic concepts of leadership.	Introduction	Lecture	Exam, Report
2,3,4	8	2. Build power and influence.	Practical applications	Lecture	Try
5,6,7	8	3. Add value to their sphere of influence	Practical applications	Lecture	Exam, Report
8,9,10	8	4. Give and receive feedback, actively listen, provide supportive communication, and coach and counsel their team members.	Management and leadership	Lecture	Try

Infrastructure		
Required readings:		
Course Books		
Other		
Special requirements		
Social services (e.g. guest lectures, vocational		
training and field studies)		

Acceptance		
Prerequisites	40	
Minimum number of students	No	
The largest number of students	50	

Method of Construction and Estimation

Course Discription

It is one of the important academic subjects for students of civil engineering in all its branches. The study of this subject aims to teach the student the techniques and practices of various construction equipment, various types of construction activities and hydraulic installations in particular. It also covers various aspects of estimating the quantities of work items related to those works and their various activities, water supply and sanitation works. , irrigation works, price analysis, real estate evaluation, and preparing reports to estimate various items.

14Educational institution	Anbar University/College of Engineering
15University department/center	Department of Dams and Water Resources Engineering
16Course name/code	Method of Construction and Estimation / DWE4329
17Programs in which it is included	Bachelor's degree
18Available forms of attendance	Official working hours

19Semester/year	Second semester/ 2021-2022	
20Number of study hours (total)	60	
21The date this description was prepared	31 January 2022	

22 Course objectives:

- A- Teaching the student the ability to prepare tables of quantities and their details.
- B- Teaching the student the ability to calculate the quantities of various buildings and facilities
- C- Enabling the student to know the specifications of construction materials and the appropriate dimensions for their calculation.
- D- Teaching the student to convert quantities into tables of quantities and bids for projects.
- E- Teaching the student how to deal with documents for projects
- F- That the student becomes able to calculate the different geometric shapes and proportions of the materials used

23 Learning outcomes, teaching, learning and assessment methods:

First: Knowledge and understanding:

- 1. The student knows the construction methods used on the work site.
- 2. The student learns the methods and concepts of calculating different quantities for construction paragraphs.
- 3. Teach the student how to analyze quantities into their original sources.
- 4. The student will be able to convert calculated quantities into tables of quantities according to the main specifications.

Second: Course-specific skills:

- 1. Acquire the skill of reading and preparing a table of quantities.
- 2. Acquiring the skills of calculating the quantities of various items in construction.
- 3. Acquiring the skills of analyzing paragraphs into their original resources and quantities.
- 4. Acquire the skill of how to identify the quality of materials used and their compliance with specifications.

a. Teaching and learning methods:

- 1. Explaining and clarifying the basics of construction methods and calculating quantities in particular, and topics related to educational outcomes through lecture and discussion.
- 2. Solving a group of applied examples by the subject teacher, with students participating by solving some examples and applied questions.
- 3. Continuous daily and weekly surprise tests and directing the student to prepare reports on the subject's vocabulary.
- 4. Directing students to some websites to benefit from them.

b.Evaluation methods:

- 1- Evaluating students individually through class participation and oral questions.
- 2- Evaluating students collectively through daily examinations and extracurricular duties such as writing reports.
- 3- Monthly or semi-semester exams.
- 4- Final exams for the first and second round.

c. Thinking skills:

- 1. Critical thinking (question and answer).
- 2. Interaction skill
- 3. Approximate practical examples and try to determine the extent of their compatibility with the situations that the engineer may encounter during the work.

d.Teaching and learning methods:

- 1. Use ordinary means, such as the blackboard, and modern means, such as Data Show devices, to present lectures to attract attention and attract students so that the idea is better conveyed to the student.
- 2. Interrogating students through discussion sessions by asking intellectual questions.
- 3. Using the method of linking the subjects taken in the previous academic stages, while giving examples related to the practice of their specialization to provide them with practical skills to benefit from them in the future.

e.Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam: 60%

f.General and transferable skills (other skills related to employability and personal development):

- 1- Skill in different methods of carrying out construction works.
- 2- Arithmetic skills and the ability to calculate and estimate quantities and costs using electronic programs.
- 3- The skill of learning to use accumulated experiences in the workplace.

24 Course structure:

Evaluation method	Teaching method	outcomes Name of unit/course or subject	Required learning	Hours	Week
Discuss, solve problems	Theoretical	An introduction to construction methods and types of Estimating	Building technology and construction	3	Thirty-thi
Discussion, quick exam, problem solving	Theoretical	Tables of quantities and units used Dividing the construction project into the main activities	Construction industry	٣	Thirty-for
Discussion, homework	Theoretical	Calculate the quantities of excavation and filling for buildings	Methods of planning construction projects	٣	Thirty-fift
Discussion, quick quiz	Theoretical	Calculation of quantities of concrete parts and molds for buildings 1	Gantt chart	٣	Thirty-six
Discuss, solve problems	Theoretical	Analysis of quantities of construction work	PERT method	٣	Thirty-sev
discussion	Theoretical	Calculation of quantities of concrete parts and molds for buildings 2	Work progress reports	٣	Thirty-eig
	Theoretical	Monthly exam	Monthly exam	٣	Thirty-nir
Discussing problem solving, homework	Theoretical	Finishing works for buildings	Balance line method	٣	Fortieth.
Discussion, quick exam, problem solving	Theoretical	Analyzing the amounts of finishing works	Business distribution structure	٣	Forty-firs
Discuss your homework	Theoretical	Earth excavation works: digging and filling	Earned value method	٣	Forty-sec
Discussion, quick quiz	Theoretical	Building and construction equipment	Main types of construction contracts	٣	Forty-thir
Discussion, quick quiz	Theoretical	Estimating labor, materials and equipment	Project delivery methods	٣	Forty-fou
discussion	Theoretical	Profit margins, overheads and cost sections	Project cost control systems	٣	Forty-fiftl
discussion	Theoretical	Engineering specifications for construction works	Value Engineering	٣	Forty-sixt
Discuss, solve problems	Theoretical	Preparing reports and bills of quantities	Resource planning and allocation	٣	Forty-sev
2nd Course Exam					Forty-eigh

26 Acceptance:				
Prerequisites		Techn	ology Building Materials	
_		Engin	eering Drawing	
The smallest number of students		١.		
The largest number of stude	nts	٤٠		
25 Infrastructure :		- '		
. Required readings:	Estimating and costing in civil Engineering By:		costing in civil Engineering By:	
Course books	B.N.DU	TTA 20	12	
Other	Civil Est	timatin	g. costing and valuation Quantity	
	Surveyi	ng for building and civil Eng. works: By		
	P.LBhas	in and	S.Chand New Delhi	
	CIVIL E	STIMA	TING and Costing	
	:A.K.UP	ADHY	AY 2010	
Special requirements				
Social services (including, for example, gu		uest	No	
lectures, vocational training, and field stud		dies(
Social services (including, for example, gue		uest	Scientific trips to project sites	
lectures, vocational training, ar	nd field stu	dies)		

Water resources planning and management

Course description

This course will provide the student an introduction to the planning, design, and operation of water resources systems using mathematical optimization methods and models. The student will learn to apply basic economic analysis (engineering economic and microeconomic analysis) and operations research techniques (linear and nonlinear dynamic programming) and will apply them to various water resource allocation problems.

	Anbar University/ College of	
1. Educational institution	Engineering	
	Department of Dams and Water	
2. University department/center	Resources Engineering	

3. Course name/code	DWE4307
4. The programs in which participates	Bachelor's
5. Available forms of attendance	Official working hours
6. Semester/year	the chapter Second/ fourth academic year
7. Number of study hours (total)	٦.
8. The date this description was prepared	Y • Y 1/9/Y 0

9- Course objectives:

This course will provide the student an introduction to the planning, design, and operation of water resources systems using mathematical optimization methods and models. The student will learn to apply basic economic analysis (engineering economic and microeconomic analysis) and operations research techniques (linear, nonlinear and dynamic programming, and combinatorial optimization) and will apply them to various surface and ground water resource allocation problems.

10- Learning outcomes and methods of teaching, learning and evaluation:

First: Knowledge and understanding:

- 1. The student knows the management and planning of water resources and its importance in the labormarket.
- 2. The student determines the division of basic tasks and functions at the work site.
- 3. The student knows the role of the project manager and what other basic roles he performs at the work site noting the importance of acquiring practical skills and experience.
- 4. The student understands the nature of the relationship and interrelationship between the different specializations in engineering work and their practical role, and the student understands the roles of participants in engineeringwork.

Second: Course -specific skills:

- 1. Developing the student's particular water resources management and planning skills and preparing him scientifically to be a successful engineer in water resources projects.
- 2. Developing the skills of planning, organizing, directing and controlling as the basics of good management.
- **3.** Developing the student's skill of making appropriate decisions and time management as they are the essence of managing water resources projects.

: A- Teaching and learning methods

- 1. Explain and clarify the basics in Management and planning of water resources engineering in particular and topics related to education outcomes through delivery, lecture and discussion.
- 2. Solving a group of applied examples by the subject teacher. Students participate by solving some examples and applied questions.
- 3. Continuous daily and weekly surprise tests and directing the student to prepare reports on construction management vocabulary and the sequence of logical work paragraphs to expand his understanding of the subject.
- 4. Directing students to some websites to benefit fromthem.

B – Evaluation methods:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with questions related to the daily and previous subjects.
- 3- Assessing students collectively by giving extracurricular assignments such as writing reports or doing assignments.
- 4- Monthly exams during class for students to evaluate their overall performance and understanding of the material
- 5-Final exams for the first and second round.

: C- Thinking skills

- 1. Critical thinking (question and answer).
- 2. Interaction skill
- **3.** Approximate practical examples and try to determine the extent of their compatibility with the situations that the engineer may encounter during the work.

: D - Teaching and learning methods

- 1. Data Show devices, in presenting lectures to attract attention and attract students so that the idea is better conveyed to the student.
- 2. Questioning students through discussion sessions by asking intellectual questions.
- 3. Using the method of linking the subjects taken in the previous academic stages while giving examples related to the practice of their specialty to provide them with practical skills to benefit from them in the future.

: E- Evaluation methods

:The evaluation is done on the basis of

1- Monthly exams: 20%

2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam : 60%

F - General and transferable skills (other skills related to employability and : (personal development

- 1- Skill in managing and planning work in water resources engineering projects.
- 2- The skill of linking scientific planning with practical.
- 3- The skill of learning to use accumulated experiences in decision-making.

11- Course structure:

Week	Hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluation method
First	٤		Introduction: Water Resources Planning and Management, EWRE Program Objectives Water Availability and Use Global Water Resources, Typical domestic water use Water Stress Index, Water Stress, Water Crisis.	theoretical	, discussion , Problem solving homework
Second	£		Sustainable Development Sustainability, Principle to Practice Multidisciplinary Adaptive Process Sustainability Criteria	theoretical	discussion, quick Solve , exam problems
Third	ŧ		Water Resource Systems Analysis, System Transformation Function, Simulation. Simulation vs Optimization, Modeling Process.	theoretical	, Discussion homework

		I		
Fourth	ŧ	Water Resources D Benefit – Cost Analysis, Cash Flow Diagrams Di Incremental DB/DC Met	scount Rate, theoretical	Discussion, quick quiz
Fifth	٤	Microeconomics, Consumer's Budget Der Value, Willingness-to- F Measuring Benefits w/I Methods using Market Circumstantial Evidence WTP Methods using Circumstantial, Evidence summarizing – Measuri Benefits w/o Market, westimate ecosystem val Measures of Ecosystem Challenges of Ecosystem Valuation.	mand, Pay, Market Prices e, Imputed theoretical eng, hy lues.	Solve , discussion problems
VI	ŧ	Firms, Profit, The Firm Revenue, The Firm's Pro Way, Cost Functi Competitive Firm.	oblem – 2nd theoretical	discussion
Seventh	٤	Consumers' WTP, Proc Pricing, Consumers' & Surpluses, Surpluses – mean Production Funct of Production	Producers' What they theoretical	problem Discussing solving, homework
VIII	٤	Optimization of Water Introduction: Linear Pro Nonlinear Programmin Programming	ogramming, theoretical	problem Discussing solving, homework
Ninth	ŧ	Linear Programming, Method, Bounded Unbounded, Feasible feasible solution, Wate application by Graphica	area, area, theoretical tr Resources	discussion, quick exam, Solve problems
Tenth	٤	Classical Optimization Linear Programming f feasible solution, Terminology, Decision Constraints, Objective F	ormulation. optimal, theoretical variables,	your Discuss homework
Eleventh	٤	Stream waste load models Linear superpose programming (LP) for Groundwater quality models and the streament design superposition LP for Single reservoirs reservoirs in series programming (LP) form	formulation, nanagement e pump &	Discussion, secret exam

Twelvet h	٤	Classical Optimization methods Linear Programming the simplex method, one phase, two phase. Water resources, Surface water, Application.	Discussion, quick quiz
Thirteen th	ŧ	Optimization methods Linear Programming on Revised simplex method Water resources, Surface water, Application	discussion , Solve problems
Fourtee nth	ŧ	Optimization methods Linear Programming on Sensitivity Revised simplex method Water resources, Surface water, Application	al , discussion
Fifteent h	٤	Optimization methods Linear Programming on transportation method (Balanced Transportation Problem) Water resources	discussion , Solve problems
Sixteen	٣	2nd Course Exam	

_: Infrastructure - \ Y	
: readingsCourse booksOther	Loucks, Daniel P. and Eelco van Beek, Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications.
Special requirements	nothing
Social services (including, for example, guest lectures, vocational (training, and field studies	Scientific trips to project sites

: Acceptance			
Prerequisites	engineering statistics, Computer Science		
The smallest number of students	١.		
The largest number of students	٤٠		

Theory of Structures

Course Weekly Outline

Course Instructor	Zaid Al-Azz	zawi				
E-mail	zaid.kani@u	zaid.kani@uoanbar.edu.iq				
Title	Theory of St	ructures				
Course Coordinator	Zaid Al-Azz	Zaid Al-Azzawi				
Course Description	diagrams of struct	This course covers the outlines of general principles, indeterminacy and stability, shear and diagrams of structures, trusses, approximate analysis, influence lines and moving con loads, analysis of statically determinate structures, analysis of statically indeterminate str				
Course Objective	 To impart the principles of elastic structural analysis and behaviour of indete structures. Ability to idealize and analyze statically determinate and indeterminate structures. To enable the student to get a feeling of how real-life structures behave. Familiarity with professional and contemporary issues. 					
Course Outcomes	The student after undergoing this course will be able to: 1. To understand analysis of indeterminate structures and adopt an apprenance structural analysis technique.					
Textbook	2. Determine response of structures by classical, iterative and matrix method Structural Analysis by R. C. Hibbeler- 8 th edition.					
References	Theory of Structures by S.P. Timoshenko and D. H. Young - 2 nd edition. Theory of Structures by Yuang Yu Hsiegh. Structural Analysis by Aslam Kassimali, 4 th edition. Structural and Stress Analysis by Dr. T.H.G Megson – 2 nd edition, 2000.					
Course Assessment	Term Tests	Laboratory	Quizzes	Project	Final	
Course Assessment	30.0%	0.0%	10.0%		60	
General Notes						

Course weekly Outline

week	Date	Topics Covered	Lab. Experiment Assignments	N
1		Introduction to structural analysis		
2		Determinacy and stability of structures		
3		Shear and moment diagrams of structures		
4		Shear and moment diagrams of structures		
5		Simple Trusses and Compound Trusses		
6		Complex Trusses OR Approximate Analysis of Structures		M on
7		Influence lines and moving concentrated loads		
8		Influence lines and moving concentrated loads		
9		Deflection of determinate structures		
10		Deflection of determinate structures		
11		Analysis of indeterminate structures- Consistent deformation method.		
12		Analysis of indeterminate structures- Consistent deformation method.		
13		Analysis of indeterminate structures using Slope- Deflection Method		
14		Analysis of indeterminate structures using Moment- Distribution Method		
15		Review		

Course Weekly Outline

Course Instructor	Dr. Zaid Al-Azzawi
E-mail	zaid.kani@uoanbar.edu.iq
Title	Engineering Numerical Methods (<u>DWE3214)</u>
Course Coordinator	
Course Objective	1. Be aware of the mathematical background for the differe numerical methods introduced in the course.

	 Understand the different numerical methods to solve algebraic equations and to solve system of linear and non lin equations. Understand the different numerical methods for interpolati differentiation, integration and solving set of ordinary different equations. 				
		d how numeric a manner th			_
	5. Use the bui	ilt in functions	in MATLAB	and EXCEL.	
	6. Create MA problems.	TLAB function	ons for solving	numerical eng	gineerii
	7. Work on multidisciplinary projects				
Course Description	The numerical methods course involves solving engineering problems drawn from all fields of engineering. The numerical methods include: error analysis, roots of nonlinear algebra equations, solution of linear and transcendental simultaneous equations, matrix and vector manipulation, curve fitting an interpolation, numerical integration and differentiation, solution of ordinary and partial differential equations.				
Textbook		ethods for Eng , 6th edition 20		hapra and R. I	P Canal
References	 Numerical Methods for Engineers, S. C. Chapra and R. P Canale, McGraw-Hill, edition 2010. Numerical Methods for Engineers and Scientists by Joe D. Hoffman, 2nd Edition. Lectures on Numerical Analysis by Dennis Deturck and Herbert S. Wilf. Numerical Analysis Using MATLAB® and Excel® by Steven T. Karris, 3rd Edition. Numerical Methods in Engineering with MATLAB® by Jaan Kiusalaas. Engineering Analysis- Interactive Methods and Programs with FORTRAN, QuickBas MATLAB, and Mathematica by Y. C. Pao. التحليل الهندسي والعددي التطبيقي د. حسن مجيد حسون الدلفي ومحمود عطا الله مشكور. 				
	Term Tests	Laboratory	Quizzes	Project	Fina
Course Assessment	(30%)	(10%)	(10%)		Exar (50%)
General Notes	, ,	, /	, /		

Course weekly Outline

week	Date	Topics Covered	Not
1		 Introduction Significant digits, precision, accuracy, errors, and number representation The Taylor series Maclaurin series 	
2		Chapter 1: Determinants and Matrices	
3		Chapter 2: Systems of Linear Algebraic Equations	
4		Chapter 2: Systems of Linear Algebraic Equations	
5		Chapter 3: Interpolation and Curve fitting	
6		Chapter 4: Numerical Differentiation and Integration	
7		Chapter 5: One-Dimensional Initial Value Problem	
8		Chapter 5: One-Dimensional Initial Value Problem	
9		Chapter 6: One-Dimensional Boundary Value Problem	
10		Chapter 6: One-Dimensional Boundary Value Problem	
11		Chapter 6: One-Dimensional Boundary Value Problem	
12		Chapter 7: Partial Differential Equations	
13		Chapter 7: Partial Differential Equations	
14		Chapter 7: Partial Differential Equations	
15		Review	

16 Exam

Construction for Water Resources Projects

Course description form

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

Educational institution	Anbar University/College
	of Engineering
University department/center	Department of Dams and
	Water Resources Engineering
Course name/code	Construction for Water
30 11100 1111110, 00 110	Resources Projects
	DWE2313
The programs participates in	Bachelor's
Available forms of attendance	Official working hours
Semester/year	The second / 2022
).Number of study hours (total	48
The date this description was	2021-2022
prepared	

Course objectives:

- 1- The student understands the science of building construction because it is the basis and entry point for dealing with engineering facilities
- 2-Increasing students' understanding and awareness of how to deal with hydraulic buildings and how to increase their lifespan through the use of appropriate construction materials for use on the work site, in addition to how to protect these facilities from external conditions and methods of constructing them

Learning outcomes and methods of teaching, learning and evaluation

- A- Knowledge and understanding:
- 1- Learn about the building materials used in hydraulic facilities
- 2-Enhancing students' awareness of the behavior of hydraulic buildings when exposed to external conditions

Identify the mechanical properties and behavior of building materials Discussing everything new in the science of building construction

Skills specific to the subject:

1- A detailed study of the science of building construction Study of the hydraulic properties of buildings Increase the student's awareness of the importance of sustainability when using building materials on the work site

Preparing a successful engineer who knows how to deal with hydraulic facilities

Teaching and learning methods

Providing students with the basics and topics related to the previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments

Solving a group of practical and applied examples by the subject teacher Through discussion, students participate in solving some practical problems

Daily surprise and continuous weekly tests

Directing students to some websites to benefit from them

: Evaluation methods

Evaluating students individually by giving them an opportunity to participate in the class by answering questions

Evaluating students collectively through daily exams with practical and theoretical questions

Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments

Permanent monthly exams for students to evaluate their general performance and understanding of the subject

Final exams for the first and second round

Thinking skills

Knowing and studying the properties of hydraulic buildings and linking them to reality to direct the student's thought towards practical life Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality

Teaching and learning methods

Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better

Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways

Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics

Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones Providing students with practical skills by linking their studies to practical reality

Evaluation methods The evaluation is based on

Monthly exams: 20% Daily exams: 10%

Duties: 5%

Commitment to working hours + daily participation: 5%

Practical exam 10% Final exam: 50%

General and transferable skills (other skills related to employability and personal development)

Empowering students with the subject in its applied and cognitive aspects
Developing the student's ability to analyze information and interpret the data
he obtained by linking the topic he learned with practical reality
Enabling the student to use the specific and general equations of the subject
and how to benefit from them in analyzing issues and extracting results
accurately

Enabling the student to conduct a field survey to identify the problems facing the engineer in the field

Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Discussi on, quick exam, problem solving, homewo rk	theoretical	2. Introduction	1. Introduction	2	1
Discussi on, quick exam, problem solving, homewo rk	theoretical	3. Construction materials	1. Construction materials	2	2
Discussi on, quick exam, problem solving, homewo rk	theoretical	Equipment used in the creation of buildings	Equipment used in the creation of buildings	2	3
Discussi on, quick exam, problem solving, homewo rk	theoretical	Equipment used in the creation of buildings	Equipment used in the creation of buildings	2	4
Discussi on, quick exam, problem solving, homewo rk	theoretical	The buildings above ground level	The buildings above ground level	2	5

D: :		TI	TI		
Discussi on, quick exam,	experimental	The buildings above ground level	The buildings above ground level	2	6
problem solving, homewo rk					
Discussi on, quick exam, problem solving, homewo rk	theoretical	The buildings below the level of the earth's surface	The buildings below the level of the earth's surface	2	7
Discussi on, quick exam, problem solving, homewo rk	experimental	The buildings below the level of the earth's surface	The buildings below the level of the earth's surface	2	8
Discussi on, quick exam, problem solving, homewo rk	theoretical	The buildings below the level of the earth's surface	The buildings below the level of the earth's surface	2	9
Discussi on, quick exam, problem solving, homewo rk	experimental	Lining.	Lining.	2	10
Discussi on, quick exam, problem solving, homewo rk	theoretical	Lining.	Lining.	2	11
Discussi on, quick	theoretical	The buildings above ground level	The buildings above ground level	2	12

exam, problem solving, homewo rk			

Infrastructure	
Building construction, Zuhir Sako	Required readings:
Internet sites	② Course books ② Other ■
Engineering studio	Special requirements
nothing	Social services (including, for example, guest lectures, vocational training, and field studies)

ad			

Building materials	Prerequisites
10	The smallest number of students
40	The largest number of students

Environmental Engineering

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE3308 Environmental Engineering	3. Course name/code
Engineering	4. The programs he participates in
electronic	5. Available forms of attendance
(theoretical)	6. Semester/year
Second semester 2022-2023	7. Number of study hours (total)
45 hours distributed as follows: 3 hours per	8. Date this description was
week	prepared

Course objectives:

- 1. Identify the quantity, quality, types and characterization of wastewater generated
- 2.To understand the properties and the design criteria of the conventional wastewater treatment plant (WWTP).
- 3. To learn the objectives and methods of sewage treatment and to study the features and function of different primary treatment units.
- 4. To study the features and function of different secondary treatment units.
- 5. To learn the objectives and methods of sewage disposal.
- 6. To learn the objectives and methods of sludge treatment.
- 9 .Learning outcomes and methods of teaching, learning and evaluation
- A. Teaching and learning methods
- \. Lectures

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	1
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	0
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development.(
- \. Ability to deal with work environment problems
- $^{\upgayscript{\upsage}{$\upsage}}$. Correct investigation of problems and the ability to find solutions to them
- r. Evaluate, use, and improve work mechanisms
- ٤. Determine appropriate work standards
- 5 .Developing the spirit of cooperation and teamwork as one team

13.Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures	Wastewater treatment objective		3	١
Short exam + assignments + attendance and participation	Lectures	Sanitary sewage flow estimation		3	۲
Short exam + assignments + attendance and participation	Lectures	Characteristics and composition of sewage		3	٣
Short exam + assignments + attendance and participation	Lectures	Sewerage system		3	٤
Short exam + assignments + attendance and participation	Lectures	Types and method of wastewater treatment		3	0
Short exam + assignments + attendance and participation	Lectures	Primary treatment		3	٦
Short exam + assignments + attendance and participation	Lectures	Screens		3	٧
Short exam + assignments + attendance and participation	Lectures	Grit chamber		3	٨
Short exam + assignments + attendance and participation	Lectures	Primary sedimentation tanks		3	٩
Short exam + assignments + attendance and participation	Lectures	Secondary Treatment of Sewage		3	١.
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	11
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	17

Short exam + assignments + attendance and participation	Lectures	Trickling filter	3	١٣
Short exam + assignments + attendance and participation	Lectures	Sludge treatment	3	١٤
Short exam + assignments + attendance and participation	Lectures	Advanced treatment	3	10

11 .Infrastructure				
Reference name WATER SUPPLY AND SEWERAGE,, FIFTH Edition	Author name E.W.STEEL & TERENCE J .MCGHEE	Required readings:		
12.Acceptance				
		Prerequisites		
	The smallest number of students			
		The largest number of students		

Sanitary engineering

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE3309 Sanitary engineering	3. Course name/code
Engineering	4. The programs he participates in
In class room)theoretical(5. Available forms of attendance
First semester	6. Semester/year
45 hours distributed as follows: 3 hours per week	7. Number of study hours (total)
7.77-7.71	8. Date this description was prepared

Course objectives:

- 1. To know the basics, importance, and methods of water supply.
- 2. To study the various sources and properties of water.
- 3. To understand the various methods of conveyance of water.
- 4. To learn the objectives and methods of water treatment and to study the features and function of different water treatment units.
- 5.To study the various sources and characteristics of water.
- 6.To qualify water demand and population forecasting.
- 7.To understand the properties and the design criteria of the conventional water treatment plant (WTP).

A.Teaching and learning methods

\forall . Theoretical + applied lectures + electronic lectures recorded using Google Classroom with White Board in an interactive manner.

B.Evaluation methods

Short exams	١
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	0
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development).(. Ability to deal with work environment problems
- Υ . Correct investigation of problems and the ability to find solutions to them
- T. Evaluate, use and improve work mechanisms
- Determine appropriate work standards
- .°Developing the spirit of cooperation and teamwork as one team

1..Course structure

Evaluation Method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	week
Short exam + assignments + attendance and participation	Lectures	Introduction of Sanitary Engineering		3)
Short exam + assignments + attendance and participation	Lectures	Basics of Sanitary and Environmental Engineering		3	۲
Short exam + assignments + attendance and participation	Lectures	Sources of water, the amount of water and sewage		3	٣
Short exam + assignments + attendance and participation	Lectures	Water collection		3	٤
Short exam + assignments + attendance and participation	Lectures	Surface water, quality of water, drinking water standards		3	0
Short exam + assignments + attendance and participation	Lectures	Water consumption		3	7
Short exam + assignments + attendance and participation	Lectures	Pumping design		3	٧
Short exam + assignments + attendance and participation	Lectures	Water treatment(coagulati on)		3	٨
Short exam + assignments + attendance and participation	Lectures	Water treatment (flocculation)		3	٩
Short exam + assignments + attendance and participation	Lectures	Water treatment (sedimentation)		3	1.
Short exam + assignments + attendance and participation	Lectures	Water treatment (sedimentation)		3	11
Short exam + assignments + attendance and participation	Lectures	Water treatment(filtration)		3	١٢
Short exam + assignments +	Lectures	Water treatment(disinfecti on)		3	١٣

attendance and participation				
Short exam + assignments + attendance and participation	Lectures	Water distribution	3	١٤
Short exam + assignments + attendance and participation	Lectures	Introduction to Advanced Treatments	3	10

\\!\.Infrastructure				
Re	eference name	Author Name	Required readings: Course books	
	WATER SUPPLY ND SEWERAGE , , FIFTH Edition	E.W.STEEL & TERENCE J .MCGHEE	• Other	
			Special requirements	
			Social services (including, for example, guest lectures, vocational training, and field studies(

۱۲.Acceptance	
	Prerequisites
	The smallest number of students
	The largest number

Open Ducts Material

Open Channels

It is a branch of water resources topics that is concerned with the study, analysis and design of different types of open channels for flow.

The study of this topic aims to teach and train the student the basics of this specialization and the principles of analysis and design, and the calculation of safety coefficients for each case of design, and the study of considerations and design equations for each case of flow that he needs for subsequent studies.

Course Description

1- Educational institution	Anbar University / College of Engineering
2- University Department / Center	Department of Dams and Water Resources Engineering
3- Course name/code	DWE3314
4- Programs in which it enters	Bachelor
5. Available Forms of Attendance	Official working hours
6- Semester/Year	First Semester / Third Academic Year
7- Number of study hours (total)	48
8. Date of preparation of this description	28/1/2022

9- Course Objectives:

- A -Introducing the student to the most important types of open channels and methods of designing them because it is one of the basic scientific topics of dam engineering and water resources.
- B It has an important role in increasing the student's intellectual perceptions to deal with the engineering problems facing hydraulic installations and find solutions to these problems.
- C- Its basic and prominent role in preparing designs and plans for open channels related to irrigation engineering and dams.

10- Learning outcomes and methods of teaching, learning and assessment:

First: Cognitive Objectives:

- 1- Identify the basic types of open channels.
- 2- Expanding students' perceptions and enhancing the concept of designs by giving them general principles and concepts about the design requirements of open channels.

Second: Course Skills Objectives:

- 1 A detailed study of open channels.
- 2- Studying the mathematical details that the student needs during his study of the subject.
- 3- Preparing an engineer to be a successful engineer by learning the correct principles of his specialization.

A- Teaching and learning methods:

- 1- Providing students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- 2- Solving a set of practical and applied examples by the subject teacher.
- 3- Through discussion, students are involved by solving some practical problems.
- 4- Sudden daily and weekly continuous tests.
- 5- Guiding students to some websites to benefit from them.

B- Evaluation Methods:

- 1- Evaluating students individually by giving an opportunity for classroom participation by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular duties such as writing reports or solving assignments.
- 4- Permanent monthly exams for students to evaluate their overall performance and understanding of the material.
- 5- Final exams for the first and second rounds.

C- Thinking skills:

- 1- Knowing and studying how to analyze the factors affecting the flow and turn them into principles of design and link them to reality to direct the student's thought towards practical life.
- 2- Analyzing the results of solving problems and comparing them with reality mentally and the extent to which they match the actual design values.
- 3- Analyzing the results obtained by the student by conducting practical reports and reaching the extent of their truth.

D- Teaching and learning methods:

- 1- Using modern means in presenting the scientific and theoretical side, such as Data Show devices, to attract attention and attract students to better reach the idea to the student.
- 2- Giving students extracurricular duties that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogate students through panel discussions by asking intellectual questions such as: (how, why, when, where, any) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking what has been taken from the subjects taken in the pre-university stages and linking them to the new.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation Methods:

The evaluation is carried out on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to permanence + daily participation: 5%

5- Final exam: 60%

General and transferable skills (other skills related to employability and personal development):

- 1- Enabling students to study the material in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze the information and interpret the data obtained by linking the subject he learned with practical reality.
- 3- Enabling the student to use the special and general equations of the subject and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems that fall on the shoulders of the engineer in the field.

11. Course Structure:

e week	Hours	Required Learning Outcomes	Name of the unit/course or topic	Method of education	Evaluation method
ne first	3	General definition of the subject	Introduction,	theoretical	Discussion, Quick Exam, Problem Solving, Homework
econd	3	Types of flow and ducts	Types, state, and regims of flow, Kindes of open channel	theoretical	Discussion, Quick Exam, Problem Solving, Homework
Гhird	3	Special equations for calculating areas	Channel geometry (rectangular), Channel geometry (others)	theoretical	Discussion, Quick Exam, Problem Solving, Homework
ourth	3	Optimal section theory	Best efficient section	theoretical	Discussion, Quick Exam, Problem Solving, Homework
V	3	Speed distribution of flow section	Quiz with resolve problems and discussion Velocity- distribution coefficients	theoretical	Discussion, Quick Exam, Problem Solving, Homework
Sixth	3	Pressure distribution of flow section	Pressure distribution in a channel section Effect of slope on pressure distribution	theoretical	Discussion, Quick Exam, Problem Solving, Homework
eventh	3	Energy & Specific Energy	Energy, in open channel specifuc energy in open channel	theoretical	Discussion, Quick Exam, Problem Solving, Homework
lighth	3	Channel Design	Design of open channels	theoretical	Discussion, Quick Exam, Problem Solving, Homework
Ninth	3	Practical examples of critical flow design	Quiz + resolve problems Critical flow	theoretical	Discussion, Quick Exam, Problem Solving, Homework

X	3	Definition of uniform flow	Uniform flow (manning equation)	theoretical	Discussion, Quick Exam, Problem Solving, Homework
eventh	3	Design for lined duct types	Design of Erodible channels	theoretical	Discussion, Quick Exam, Problem Solving, Homework
welfth	3	Design for corrosive channel types	- Design of nonerodible channels	theoretical	Discussion, Quick Exam, Problem Solving, Homework
irteenth	3	Calculating the design dimensions of flow sections	- Determination of section dimentions	theoretical	Discussion, Quick Exam, Problem Solving, Homework
ırteenth	3	define and use the Lycee equation for channel design	- Lacy equat ion	theoretical	Discussion, Quick Exam, Problem Solving, Homework
fteenth	3	Examples and review	- Quiz + resolve questions Examples Critical slope	theoretical	Discussion, Quick Exam, Problem Solving, Homework
kteenth	3				

12- Infrastructure:				
Required readings: Course Books Other	Open channel hydraulics,ven.te chow			
special requirements	There isn't any			
Social services (e.g. guest lectures, vocational training and field studies)	There isn't any			

13- Acceptance:

Prerequisites	Mechanics of fluids and open channels
Minimum number of students	10
The largest number of students	40

Technology Building Materials

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

Educational institution	Anbar University/College
Laucational institution	3,7
	of Engineering
University department/center	Department of Dams and
	Water Resources Engineering
Course name/code	Technology Building
, , , , , , , , , , , , , , , , , , ,	Materials/ DWE2307
The programs participates in	Bachelor's
Available forms of attendance	Official working hours
Semester/year	The first / 2021
).Number of study hours (total	48
The date this description was	2021-2022
prepared	
	2.6

2-Course objectives:

1- The student understands the science of building materials because it is the basis and entry point for dealing with engineering facilities 2-Increase students' understanding and awareness of how to deal with building materials and conduct their own tests to indicate their suitability for use on the work site

Learning outcomes and methods of teaching, learning and evaluation

- A- Knowledge and understanding: -
- 1- Learn about the building materials used in concrete structures --
- 2-Enhancing students' awareness of the behavior of building materials when exposed to external conditions
- 3-Giving the student experience and ability to know which materials are suitable for work by conducting engineering tests

Identify the mechanical properties and behavior of building materials
Discussing everything new in the science of building materials

Subject-specific skills:

- 1- A detailed study of the science of building materials
- -Study the properties of building materials

Increase the student's awareness of the importance of sustainability when using building materials on the work site

-Preparing a successful engineer who knows how to deal with materials

Teaching and learning methods

1- Providing students with the basics and topics related to the previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.

Solving a group of practical and applied examples by the subject teacher Through discussion, students participate in solving some practical problems

Daily surprise and continuous weekly tests

Directing students to some websites to benefit from them

Evaluation methods:

Evaluating students individually by giving them an opportunity to participate in the class by answering questions

Evaluating students collectively through daily exams with practical and theoretical questions

Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments

Permanent monthly exams for students to evaluate their general performance and understanding of the subject

Final exams for the first and second round

Thinking skills

-Knowing and studying the properties of building materials and linking them to reality to direct the student's thought towards practical life Analyzing the results of laboratory tests and mentally comparing them with reality and the extent of their conformity with the actual design values

Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality

Teaching and learning methods -

Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better

Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways

Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones Providing students with practical skills by linking their studies to practical reality

Evaluation methods The evaluation is based on

Monthly exams: 20%

Daily exams: 10%

Duties: 5%

Commitment to working hours + daily participation: 5%

Practical exam 10%

Final exam: 50%

General and transferable skills (other skills related to employability and personal development)

Empowering students with the subject in its applied and cognitive aspects

Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately

Enabling the student to conduct a field survey to identify the problems facing the engineer in the field

Course structure

				ı	ı
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Discussion, quick exam, problem solving, homework	theoretical	Theories of Failure	Theories of Failure	3	1
Discussion, quick exam, problem solving, homework	theoretical	Materials Engineering Concepts	Materials Engineering Concepts	3	2
Discussion, quick exam, problem solving, homework	theoretical	Nature of Materials	Nature of Materials	3	3
Discussion, quick exam, problem solving, homework	theoretical	Steel	Steel	3	4
Discussion, quick exam, problem solving, homework	experimental	Steel	Steel	3	5
Discussion, quick exam, problem solving, homework	theoretical	Aluminum	Aluminum	3	6
Discussion, quick exam, problem solving, homework	theoretical	Aggregates	Aggregates	3	7
Discussion, quick exam,	experimental	Aggregate	Aggregate	3	8

problem					
solving,					
homework					
Discussion,	theoretical	Portland Cement	Portland Cement	3	9
quick exam,					
problem					
solving,					
homework					
Discussion,	experimental	Portland Cement	Portland Cement	3	10
quick exam,					
problem					
solving,					
homework					
Discussion,	theoretical	Wood	Wood	3	11
quick exam,					
problem					
solving,					
homework					
Discussion,	experimental	Wood	Wood	3	12
quick exam,					
problem					
solving,					
homework					
Discussion,	theoretical	Asphalt	Asphalt	3	13
quick exam,					
problem					
solving,					
homework		A 1 1	A 1 1.		
Discussion,	experimental	Asphalt	Asphalt	3	14
quick exam,					
problem					
solving,					
homework					

Infrastructure	
admissions	
Chemistry	Prerequisites
10	The smallest number of students
40	The largest number of students
nothing	Social services (including, for example, guest lectures, vocational training, and field studies)

English Language-4

It is necessary to study English-4 in order to help the student to write, read and listen to reach the level of the university student in terms of speaking and taking oral exams in English.

Educational Institution	University of Anbar/College of Engineering	
University Department/Center	Dams & Water Resources Department	
Course Name/Code	English Language-4	
Program	Bachelor	
Available Attendance Form	Full Time	
Semester/Year	Second Term/2021-2022	
Number of Credit Hours	30	
Date of Description Preparation	9/10/2021	
Course Objectives:		

Course Objectives:

- Its basic and prominent role in the student's access to an academic level that enables him to speak and write.
- Teach students to use their skills in writing more profound topics in the field of dams and water resources.
- Developing students' skills by memorizing as many English vocabulary as possible

Learning outcomes and teaching, learning and assessment methods

First: Cognitive Objectives:

- 1. Develop professional essay writing.
- 2. Develop reading skills.
- 3. Expand reading by increasing the amount of vocabulary.
- 4. Developing speaking, discussions and debates between students on various topics

Second: Course Skills Objectives:

- 1- Learn to use the skills of writing stories and essays.
- 2 -Encourage students to speak without hesitation fear.
- 3 -Developing the skill of recitation and speaking for students.
- 4- Writing simple research on different engineering topics

Teaching And Learning Methods

- 1. Provide students with the basics and topics related to previous learning outcomes through recitation or lecture.
- 2. Sudden daily and continuous weekly tests.
- 3. Expanding the discussion of speaking English with the participation.

Evaluation Methods

- 6. Evaluating students individually by giving an opportunity for classroom participation by answering questions.
- 7. Evaluating students collectively through daily exams with various questions that depend on the cognitive aspect of the student.
- 8. Evaluating students collectively by giving extracurricular duties such as writing simple essays.
- 9. Permanent monthly exams for students to evaluate their general performance and understanding of the material
- 10. Final exams for the first and second attempts.

Thinking Skills

- 1. Know and study how to use writing skills in recitation.
- 2. Encourage the student to learn about writing a real research on a specific topic

Teaching And Learning Methods

- 5. Using modern means to display the scientific and theoretical side, such as Data Show devices to attract attention and attract students to better reach the idea to the student.
- 6. Giving students extracurricular assignments that require them to exert skills and self-explanations in experiential ways.

- 7. Interrogate students through panel discussions by asking thinking questions (how, why, when, where, any) for specific topics.
- 8. Linking the cognitive aspect to the student's knowledge store to develop speaking and writing skills.

Evaluation Methods

The evaluating according to:

12.Monthly Quizzes	20%
13.Quick Quizzes	10%
14.Assignments	5%
15.Attendance +Participations	5%
16.Final Exams	60%

General and transferable skills (other skills related to employability and personal development).

- 1. Enabling students to master English 4 in the aspect of fluent speaking.
- 2. Developing the student's ability to write research with the possibility of presenting it for discussion with students and teachers

Course Structure						
Week	Hours	Required Learning Outcomes	Name of the Unit/Course or Topic	Method of Education	Evaluation Method	
1	2	Student understands lesson	Grammar (The tense system and spoken English) Vocabulary (Compound of words lifestyle, home town, house-proud) Reading (A home from home-two people describe their experiences of living abroad) Listening ('things I miss from home') Speaking (Exchanging information about people who live abroad) Everyday English (Social expressions) Writing (Applying for a job)	Thermotical lecture	Discussion quick exam and home works	
2	2	Student understands lesson	 Grammar (Present perfect, simple and continuous, and spoken English) Vocabulary (Hot verbs, make, do make way, do damage) Reading ('Paradise Lost'- how tourism is destroying the object of its affection) Listening (An interview Tashi Wheeler about her travels as child with parents) Speaking (Information Gap) Everyday English (Exclamations) Writing (Informal letters and correcting mistakes) 	Thermotical lecture	Discussion quick exam and home works	
3	2	Student understands lesson	 Grammar (Narrative tenses, past simple, Conts, and Perfect) Vocabulary (books and films) Reading (Jane Austen-one of the world's most downloaded authors) Listening (The money jigsaw-a news item from BBC's radio) Speaking (Retelling a news story, responding to a news) Everyday English (Showing interest and surprise) Writing (Narrative writing 1) 	Thermotical lecture	Discussion quick exam and home works	
		Student	Grammar (questions and negatives and spoken English) Vocabulary (Prefixes and Antonyms in context)	Thormotical	Discussion	

Reading ('Diana and Elvis shot JFK!)

Listening ('My most memorable lie'-people confess to untruths)

Speaking (Discussion-good and bad lies) Everyday English (Being polite)

Thermotical

lecture

quick exam,

and home

works

understands

lesson

2

4

			Writing (Linking ideas)		
5	2	Student understands lesson	 Grammar (Future forms and spoken English) Vocabulary (Hot verbs-take, put) Reading ('Today's teenagers are just fine') Listening arranging to meet-three friends decide a time and a place to get together) Speaking (Future possibilities in your life) Everyday English (Telephone conversations) Writing (writing Emails) 	Thermotical lecture	Discussion, quick exam, and home works
6	2	Student understands lesson	 Grammar (Expression of quantity) Vocabulary (Words with variable stress) Reading (A profile of two famous brands) Listening (Radio advertisements-what's the product? What are the selling points?) Speaking (A lifestyle survey) Everyday English (Business expression, Numbers, Fractions, decimals, date, time) Writing (A consumer survey) 	Thermotical lecture	Discussion, quick exam, and home works
7	2	Student understands lesson	 Grammar (Modals and related verbs 1, spoken English, Declarative questions, and Question expressing surprise) Vocabulary (Hot verb-get) Reading ('Meet the kippers'-an article about grown-up children who won't leave home) Listening (Getting married-an Indian lady talks about her marriage) 	Thermotical lecture	Discussion, quick exam, and home works
8	2	Student understands lesson	 Speaking (The pros and cons of arranged marriage) Everyday English (Exaggeration and understatement) Writing (Arguing your case) 	Thermotical lecture	Discussion, quick exam, and home works
9	2	Student understands lesson	 Grammar (Relative clauses) Vocabulary (Adverb collocations and adverb adjectives) Reading ('Chukotka, the coldest place on earth'-an article about a remote territory of Russia) Listening (Extreme experiences-people describe their experiences in extreme weather conditions) Speaking (Making descriptions longer, talking about your experiences) Everyday English (The world around) Writing (Describing places) 	Thermotical lecture	Discussion, quick exam, and home works
10	2	Student understands lesson	 Grammar (Expressing habit) Vocabulary (Homonyms and Homophones) Reading ('People and their money-an article about three very different people) Listening (A teacher I will never forget-people describe a teacher who made a lasting impression on them) 	Thermotical lecture	Discussion, quick exam, and home works

11	2	Student understands lesson	 Speaking (Discussion-a teacher I'll never forget) Everyday English (Making your point) Writing (Writing of talking) Grammar (Modal auxiliary verbs 2) Vocabulary (Synonyms) Reading ('How the West was won'-the story of settlers in nineteenth -century America) Listening (Hilaire Belloc's Tales for children) Speaking (The murder game-one man drops dead in a country house:) Everyday English (Metaphors and idioms-the body) Writing (Formal and informal letters and Emails) 	Thermotical lecture	Discussion, quick exam, and home works
12	2	Student understands lesson	 Grammar (Hypothesizing) Vocabulary (Word pairs) Reading ('Have you ever wondered'? -the answers to some important questions in life) 	Thermotical lecture	Discussion, quick exam, and home works
13	2	Student understands lesson	 Listening (The interpretation of dreamspaul's amazing dream) Speaking (Practicing a conversation and describing your dreams) Everyday English (Moans and groans) Writing (narrative writing 2) 	Thermotical lecture	Discussion, quick exam, and home works
14	2	Student understands lesson	 Grammar (Articles) Vocabulary (Hot words-life and time) Reading ('you are never too old'-A life in the day of Mary Hobson, who gained her PhD aged) Listening (happy days-people talk about what make them happy and unhappy) 	Thermotical lecture	Discussion, quick exam, and home works
15	2	Student understands lesson	 Speaking (Discussion-the different ages of life, and their pros and cons) Everyday English (Linking and commenting) Writing (Adding emphasis in writing) 	Thermotical lecture	Discussion, quick exam, and home works

Infrastructure	
References	John & Liz Soars, "New Headway intermediate- Student's Book", 10th ed 2014
Special Reequipments	
Social services (e.g. guest lectures, vocational training and field studies)	

Acceptance					
Prerequisites					
Minimum Students Numbers	6				
Maximum Students Number	6				

Hydraulic structures

Hydraulic installations

It is a branch of Branches of water resources topics that He is interested in studying and analyzing And the design of hydraulic facilities such as regulators, culverts, cooling basins, etc.

The study of this subject aims to teach and train the student the basics of this specialty and the principles of analysis and design, And calculate the safety factors for each design case, And study the design considerations and equations for each flow case, which he needs for his subsequent studies.

1-Educational institution	Anbar University/College of Engineering
2-University department/center	Department of Dams and Water Resources Engineering
3-Course name/code	DWE3306
4-Programs in which it is included	Bachelor's
5-Available attendance forms	Official working hours
6-Semester/year	Chapter II/Third academic year
7-Number of study hours(total)	45
8-Date this description was prepared	2/10/2021

9-Course objectives:

1-Identification requester the most important hydraulic structures and their design methods Because he one Basic topics Scientific For dam and water resources engineering.

B-It has an important role in Increasing the student's intellectual awareness to deal with problems the Engineering facing hydraulic structures and find Solutions For these problems.

C-turn Basic And prominent in Preparation Designs and plans Its facilities relationship With engineering Irrigation and dams.

10-Learning outcomes, teaching, learning and assessment methods:

Firstly:ObjectivesCognitive:

- 1-identifyTypesthe basicFor hydraulic facilities.
- 2-Expanding students' awareness and enhancing the conceptDesignsthroughGive themGeneral principles and concepts aboutDesign requirements for hydraulic structures.
- 3- giveThe student has experience inA study of the reliability of hydraulic structures and the safety factors of these structures.
- 4- Learn about applications on water (hydraulics)By studying the static pressure of the fluid.

secondly: ObjectivesSkillsYehForEstablished:

- 1 Detailed study For hydraulic facilities.
- 2 Study the mathematical details that the student needs during his studies For a substance.
- 3 Teaching the student after completing the chapter Academic principal Design and force analysis.
- 4- Preparation geometric To be an engineer Successful by learning the correct principles of the specialty.

a-Teaching and learning methods:

- 1- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 2- Solving a group of practical and applied examples by the subject teacher.
- 3- Through discussion, students participate in solving some practical problems.
- 4-Continuous daily and weekly surprise tests.
- 5-Directing students to some websites to benefit from them.

B-Evaluation methods:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 4- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.
- 5- Final exams for the first and second round.

C- Thinking skills:

- 1-Knowing and studying how to analyze the factors affecting flow and transforming them into design principles and linking them to reality to direct the student's thought towards practical life.
- 2-Analyzing the results of solving problems and comparing them mentally with reality and the extent of their conformity with the actual design values.
- 3-Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

Dr-Teaching and learning methods:

- 1- Using modern means to present the scientific and theoretical aspects, such as devicesData ShowTo attract attention and attract students so that the idea reaches the student better.
- 2- Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 5- Providing students with practical skills by linking their studies to practical reality.

H-Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam: 60%

And- General and transferable skills (other skills related to employability and personal development):

- 1-Empowering students with the subject in its applied and cognitive aspects.
- 2-Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
- 3-Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting accurate results.
- 4-Enable the student to conduct a field survey to identify the problems facing the engineer in the field.

				11-	Course structu
the week	hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluati meth

Discussion, qu quiz, So proble Homew	theoretica l	Introduction	General definition of the topic	3	the first
Discussion, qu quiz, So proble Homew	theoretica l	Principles of Hydraulic Systems Analysis	Design considerations	3	the second
Discussion, qu quiz, So proble Homew	theoretica l	Classification of Structures for Flow Control	Classification of types of establishments	3	the third
Discussion, qu quiz, So proble Homew	theoretica l	Design of floors by bligh theory	Height pressure calculation and designFlooring	3	the fourth
Discussion, qu quiz, So proble Homew	theoretica l	Design of floors by line,s theory	Height pressure calculation and designFlooring	3	Fifth
Discussion, qu quiz, So proble Homew	theoretica l	Introduction of Channel Regulating Structures (weirs, barrages, sluice gates, etc.)	Introduction to hydraulic facilities regulating flow	3	VI
Discussion, qu quiz, So proble Homew	theoretica l	Quiz with solve problems and discussion	Exam and review	3	Seventh
Discussion, qu quiz, So proble Homew	theoretica l	weirs	Waste design	3	VIII
Discussion, qu quiz, So proble Homew	theoretica l	weirs (Tutorial (examples)	Practical examples of dam design	3	Ninth
Discussion, qu quiz, So proble Homew	theoretica l	Design of sluice gates	Gate design	3	The tenth
Discussion, qu quiz, So proble Homew	theoretica l	Channel Intake and Outlet (Diversion) Structures	Introduction to the types of dams and the function of each	3	eleventh
Discussion, qu quiz, Prob solving, homew	theoretica l	Flow Measurement Structures		3	twelveth

	Thirteent h	3	considerations for dam components		Outlet Works	theoretica l	Discussion quiz, P solving, hon	rob
	fourteent h	3	Studying the types of energy dissipators		Energy Dissipation Structures Design of sitting basin	theoretica l	Discussion quiz, P solving, hon	rob
	Fifteenth	3	Study of ferries and their hydraulic and structural design		Culverts	theoretica l	Discussion quiz, P solving, hon	rob
	sixteen	3				2r	nd Course l	Ex
	12-Infrast	12-Infrastructure:						
Required readings: Course books • Other •					Open channel h	ydraulics, v	en.te chow	

Dam Spillways and

nothing

nothing

13-admissions:						
Prerequisites	Fluid mechanics and open channels					
The smallest number of	10					
students						
The largest number of	40					
students	10					

Special requirementsH

example, guest lectures,

studies)

Social services (including, for

vocational training, and field

Groundwater Hydrology

Groundwater Hydrology

It is a branch of water resources topics that is concerned with the study and analysis of groundwater, groundwater reservoirs, wells, the method of recharging groundwater, and others.

The study of this subject aims to teach and train the student the basics of this specialty and the principles of analysis and design, which he needs for his subsequent studies.

University of Anbar	١ ـ المؤسسة التعليمية
Dams and Water Resources Engineering Dep.	٢ - القسم الجامعي / المركز
DWE3305	٣- اسم / رمز المقرر
Bachelor's	٤ - البرامج التي يدخل فيها
Attendance	٥ - أشكال الحضور المتاحة
First semester/ 2022-2023	٦_ الفصل / السنة
٤٥	٧- عدد الساعات الدراسية (الكلي)
18/9/2021	٨- تاريخ إعداد هذا الوصف

٩ - أهداف المقرر:

It is concerned with teaching students the basic principles of analyzing and studying groundwater hydrology (flow - wells - recharging - statistical analysis... etc.) with the aim of estimating the amount of available water and planning methods of extraction and treatment or preserving and operating it, addressing issues related to the water budget and developing methods of hydrological calculation and

accuracy. Determine water discharges, predict future water discharges, and determine the size of reservoirs.

١٠ مخرجات التعلم وطرائق التعليم والتعلم والتقييم:

أولا: الأهداف المعرفية:

The student must be able to:

- 1. Preparing and analyzing hydrological data for groundwater and using them to solve applied problems.
- 2. Water budget calculation
- 3. Researching the types of wells and methods of water extraction
- 4. Analysis of hydrological prediction of drainage and water levels

ثانيا: الأهداف المهاراتية الخاصة بالمقرر:

- 1- Think geometrically to estimate and calculate water resources.
- 2- Explains processes such as shedding, seepage, and seepage and their interactions.
- 3- It works to solve problems such as drought and a strategy to prevent it or extract groundwater in an economical way.
- 4- He uses his practical experience, if any, in comparison with the theoretical results of analysis, design and creation the solution

أ- طرائق التعليم والتعلم:

- 1- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 2- Solving a group of practical and applied examples by the subject teacher.
- 3- Through discussion, students participate in solving some practical problems.
- 4- Daily surprise and continuous weekly tests.

Directing students to some websites to benefit from them.

ب- طرائق التقييم:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.

4- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.

Final exams for the first and second round.

ج- مهارات التفكير:

- 1- \ Knowing and studying how to analyze the factors affecting surface runoff and transforming them into design principles and linking them to reality to direct the student's thought towards practical life.
- 2-Analyzing the results of solving problems and comparing them mentally with reality and the extent of their conformity with the actual design values.

Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

د- طرائق التعليم والتعلم:

- 1-Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 2-Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 3-Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 4-Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the preuniversity educational levels and linking them to the new ones.
- 5-Providing students with practical skills by linking their studies to practical reality.

ه- طرائق التقييم:

يتم التقييم على أساس:

- Monthly exams // :
- Daily exams % :
- "HomeWorks

%° :

- £ Attendance

- Final exams% ۲۰:

و ـ المهارات العامة والمنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي):

- 1-Enabling students to master the subject in its applied and cognitive aspects.
- 2-Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
- 3-Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems facing the engineer in the field

١١- بنية المقرر:

Evaluation method	Teachi ng metho d	unit/course or subject	learning outcomes	Hours	Week
Discussion, quick exam, problem solving, homework	Theory	Introduction	General Introduction	٣	First
Discussion, quick exam, problem solving, homework	Theory	Classification and types of groundwater -Basic definitions: (aquifers, Aquitard, Aquiclude, AquifugeUnsaturated zone and saturated zone.)	Learn Hydrology properties	٣	Second
Discussion, quick exam, problem solving, homework	Theory	-Hydrologic budget and groundwater sources.-Concepts of groundwater pollution	Learn Water Balance	٣	Third
Discussion, quick exam, problem solving, homework	Theory	Aquifers -Aquifers classification: (confined, unconfined and leaky)	Learn Aquifers	٣	Fourth
Discussion, quick exam, problem solving, homework	Theory	Aquifer Parameters: (porosity, recharge and discharge, hydraulic conuctivity, transmissivity, storativity, specific yield) - Anisotropy and heterogeneity	Aquifers propeties	٣	Fifth
Discussion, quick exam, problem solving, homework	Theory	Groundwater flow - Steady state and unsteady state flow	Groundwater movment	٣	Sixth
Discussion, quick exam, problem solving, homework	Theory	Mid-term Exam	Exam	٣	Seventh
Discussion, quick exam, problem solving, homework	Theory	-Driving forces of groundwater flow principles laws of groundwater flow (Darcy's law)	Learn Darcy's law	٣	Eighth
Discussion, quick exam, problem solving, homework	Theory	Groundwater Resources Development -Exploration -Evaluation -Exploitation	Groundwater dorces	٣	Ninth
Discussion, quick exam, problem solving, homework	Theory	Wells -Well Drilling Methods: - Methods of Drilling Shallow Wells:	Wells	٣	Tenth
Discussion, quick exam, problem solving, homework	Theory	Well Completion -Placement of casing -Cementing of casing -Placement of well screen	Well's types	٣	Eleventh
Discussion, quick exam, problem solving, homewor	Theory	Requirements for Water Well Design -Limitations of dimensions and diameters of casing piping -Intake area: design of well screen, gravel pack design.	Wells requirements	٣	Twelfth

Discussion, quick exam, problem solving, homework	Theory	Groundwater & Pumping Tests -Steady State Radial Flow to Wells:	Pumps	٣	Thirteenth
Discussion, quick exam, problem solving, homework	Theory	-Unsteady State Radial Flow: Theis's Method and its application, Jacob's Methods	Unsteady flow	٣	Fourteenth
Discussion, quick exam, problem solving, homework	Theory	-Discharge calculation from early drawdown data (Sen 1986)Leaky Aquifers	Discharge measurement	٣	Fifteenth
	٣	Sixteenth			

القبول: 12				
Fluid mechanics, open channel and Statistical	Prerequisites			
1.	The smallest number of students			
٥,	The largest number of students			

13: البنية التحتية	
 Foundation Design - Principles and Practice, Third Edition, by Donald P. Coduto, 2014, Pearson Education, Inc. Ground water hydrology 	Required readings: ② Course books ② Other
Nothing	Special requirements
Nothing	Social services (including, for example, guest lectures, vocational training, and field studies)

Engineering Hydrology

Engineering Hydrology

It is a branch of water resources topics that is concerned with the study and analysis of surface water, parts of the hydrological cycle, and others.

The study of this subject aims to teach and train the student the basics of this specialty and the principles of analysis and design, which he needs for his subsequent studies.

University of Anbar	١ ـ المؤسسة التعليمية
Dams and Water Resources Engineering Dep.	٢ - القسم الجامعي / المركز
DWE £ T • T	٣_ اسم / رمز المقرر
Bachelor's	٤ - البرامج التي يدخل فيها
Attendance	٥ - أشكال الحضور المتاحة
First semester/ 2022-2023	٦_ الفصل / السنة
٤٥	٧- عدد الساعات الدراسية (الكلي)
18/9/2021	٨- تاريخ إعداد هذا الوصف

٩_ أهداف المقرر:

It is concerned with teaching students the basic principles of analyzing and studying the stages of the water cycle in nature (precipitation - flow - evaporation - storage) with the aim of estimating the amount of available water and planning and operating water facilities. Addressing issues related to the water budget, developing hydrological calculation methods, accurately determining water discharges, forecasting future water discharges, and determining the size of reservoirs to meet needs. Drinking, irrigation and drying time.

١٠ م محرجات التعلم وطرائق التعليم والتعلم والتقييم:

أولا: الأهداف المعرفية:

The student must be able to:

- 1. Preparing and analyzing hydrological data and using them to solve applied problems.
- 2. Water budget calculation
- 3. Researching the forms of flow
- 4. Analysis of hydrological prediction of drainage and water levels

ثانيا: الأهداف المهاراتية الخاصة بالمقرر:

- 1- Think geometrically to estimate and calculate water resources .
- 2- Explains processes such as precipitation, runoff, and total evaporation and their interactions.
- 3- It works on solving problems such as flood and drought and strategies to prevent them.
- 4- He uses his practical experience, if any, in comparison with the theoretical results of analysis, design and creation the solution

أ- طرائق التعليم والتعلم:

- 5- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 6- Solving a group of practical and applied examples by the subject teacher.
- 7- Through discussion, students participate in solving some practical problems.
- 8- Daily surprise and continuous weekly tests.
- 9- Directing students to some websites to benefit from them.

ب- طرائق التقييم:

- 5- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 6- Evaluating students collectively through daily exams with practical and theoretical questions.
- 7- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 8- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.
- 9- Final exams for the first and second round.

ج_ مهارات التفكير:

- 3-Knowing and studying how to analyze the factors affecting surface runoff and transforming them into design principles and linking them to reality to direct the student's thought towards practical life.
- 4-Analyzing the results of solving problems and comparing them mentally with reality and the extent of their conformity with the actual design values.
- 5-Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

د- طرائق التعليم والتعلم:

- 6-Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 7-Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 8-Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 9-Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 10- Providing students with practical skills by linking their studies to practical reality.

ه- طرائق التقييم:

و - المهارات العامة والمنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصى):

- 5-Enabling students to master the subject in its applied and cognitive aspects.
- 6-Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
- 7-Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.
- 8- Enabling the student to conduct a field survey to identify the problems facing the engineer in the field.

١١- بنية المقرر:

Evaluation method	Teaching method	unit/course or subject	learning outcomes	Hours	Week
Discussion, quick exam, problem solving, homework	Theory	Introduction	General Introduction	٣	First
Discussion, quick exam, problem solving, homework	Theory	Hydrologic cycle, return periods and water balance	Learn Hydrology properties	٣	Second
Discussion, quick exam, problem solving, homework	Theory	Precipitation, types of precipitation and stream flow measurements	Learn Hydrology properties	٣	Third
Discussion, quick exam, problem solving, homework	Theory	Estimation of missed data, checking data consistency & Rainfall frequency analysis	Data Analysis	٣	Fourth
Discussion, quick exam, problem solving, homework	Theory	Theory of frequency analysis for design storms and design floods	Analysis and Design	٣	Fifth
Discussion, quick exam, problem solving, homework	Theory	Measurement of evaporation and estimation of potential evaporation	Analysis and Design	٣	Sixth
Discussion, quick exam, problem solving, homework	Theory	Mid-term Exam	Exam	٣	Seventh
Discussion, quick exam, problem solving, homework	Theory	Infiltration, Factors affecting infiltration, Measurement and estimation of infiltration process	Properties measurements	٣	Eighth
Discussion, quick exam, problem solving, homework	Theory	Hydrographs, Introduction and Unit Hydrographs	Properties measurements	٣	Ninth
Discussion, quick exam, problem solving, homework	Theory	Hydrograph application, Time Area Models and Synthetic Unit Hydrographs	Hydrology Application	٣	Tenth
Discussion, quick exam, problem solving, homework	Theory	Channel Intake and Flood routing: channel & reservoir routing	Analysis and Design	٣	Eleventh
Discussion, quick exam, problem solving, homewor	Theory	Introduction to groundwater and Movement of ground water and Transmissibility	General Introduction	٣	Twelfth
Discussion, quick exam, problem solving, homework	Theory	Applications of binominal distribution for defining the return period in engineering design	Hydrology application	٣	Thirteenth

Discussion, quick exam, problem solving, homework	Theory	Normal distribution and its application and relationship to hydraulic designs	Statistical application	٣	Fourteenth
Discussion, quick exam, problem solving, homework	Theory	Statistical distributions and their applications in flood analysis	Statistical application	٣	Fifteenth
2nd Course Exam					Sixteenth

٣١ ـ القبول:				
Fluid mechanics, open channel and Statistical	Prerequisites			
١.	The smallest number of students			
٥,	The largest number of students			

٢ ١ - البنية التحتية :	
 3- Warren vissman , Introduction to hydrology, 5th ed, 2003. 4- Ven Te Chow, Applied hydrology. 5- Em. Wilson, Engineering hydrology. 	Required readings: 2 Course books 2 Other
Nothing	Special requirements
Nothing	Social services (including, for example, guest lectures, vocational training, and field studies)

Drainage engineering subject

Course description

Drainage engineering

It is a branch of water resources topics that is concerned with studying the types of drains and their design methods, such as surface and underground sinks, in addition to analyzing the work of wells.

The study of this subject aims to teach and train the student on the basics of this specialty and the principles of analysis and design, calculating safety factors for each case of design, and studying design considerations and equations for each case.

1- Educational institution	Anbar University/College of Engineerin
2- University Department/Center	Department of Dams and Water Resour Engineering
3- Course name/code	DWE £TT.
4- Programs that include	bachelor's degree
5- Available forms of attendance	official working hours
6- Semester/Year	Second semester/Fourth academic year
7- The total number of study hours	60 hours
8- The date this description was prepared	20/9/2021

9- Course objectives:

- A Introducing the student to the most important types of drains used in agricultural lands and their design methods because it is one of the basic scientific topics for engineering dams and water resources.
- B- It has an important role in increasing the student's awareness of dealing with puncture systems and the full ability to design these systems.
- C- Its basic and prominent role in preparing designs and plans for facilities related to irrigation and drainage engineering.

10- Learning outcomes and methods of teaching, learning and evaluation:

First: Cognitive objectives:

- 1- Learn about the basic types of drinage systems.
- 2- Enhancing the concept of designs by giving them general principles and concepts about the design requirements of drinage systems.
- 3- Familiarity with the different puncture methods and the principles of appropriate selection.
- 4- Knowing the most important agricultural drainage, its types and objectives.

Second: Skills objectives for the course:

- 1 A detailed study of drainage systems.
- 2 Study the mathematical details that the student needs while studying the subject.
- 3 Teach the student after the end of the semester the principle of designing and choosing the appropriate type of drainage system.
- 4- Engineering preparation to be a successful engineer by learning the correct principles of his specialty.

A- Teaching and learning methods:

- 1- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 2- Solving a group of practical and applied examples by the subject teacher.
- 3- Through discussion, students participate in solving some practical problems.
- 4- Surprise daily, weekly, continuous and monthly tests.
- 5- Directing students to some websites to benefit from them.

B- Evaluation methods:

- 1- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 2- Evaluating students collectively through daily exams with practical and theoretical questions.
- 3- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 4- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.
- 5- Final exams for the first and second round.

C- Thinking skills:

- 1- Guiding the student to understand the importance of the drainage system applied to agricultural lands.
- 2- The student will acquire the ability to choose and implement agricultural drainage systems.
- 3- Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

D- Teaching and learning methods:

- 1- Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 2- Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 3- Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 4- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 5- Providing students with practical skills by linking their studies to practical reality.

E- Evaluation methods:

The evaluation is done on the basis of:

1- Monthly exams: 20%2- Daily exams: 10%

3- Duties: 5%

4- Commitment to working hours + daily participation: 5%

5- Final exam: 60%

- F General and transferable skills (other skills related to employability and personal development):
- 1- Enabling students to master the subject in its applied and cognitive aspects.
- 2- Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
- 3- Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.

11- Course structure:

Week	Hours	Required learning outcomes	Name of unit/course or subject	Teaching method	Evaluation method
first	3	general definition of the topic	introduction to drainage	Theoretical	discussion problem solving, homework

Second	3	Knowledge and understanding		types of covered drains systems	Theoretical	Theoretical discussion problem solving, homework
Third	3	Design considerations		Design of open drains sections	Theoretical	Theoretical discussion problem solving, homework
Fourth	3	Knowledge Understanding	and	Internal drainage	Theoretical	Theoretical discussion problem solving, homework
Fifth	3	Design considerations		interference between wells	Theoretical	Theoretical discussion problem solving, homework
Sixth	3	Knowledge Understanding	and	the effect resulting from pumping multiple wells for a short period	Theoretical	Theoretical discussion problem solving, homework
Seventh	3	Exam and review		Exam and discussion of results	Theoretical	Theoretical discussion problem solving, homework
Eighth	3	Understanding Determination	and	The distances between the drains	Theoretical	Theoretical discussion problem solving, homework
Ninth	3	Design Considerations		Hugout Equation	Theoretical	Theoretical discussion problem solving, homework
Tenth	3	Design Considerations		Ernst equation	Theoretical	Theoretica discussion problem

				T	
					solving,
					homework
Eleventh	3	Understanding and	Comparison	Theoretical	Theoretica
		Determination	between the		discussion
			Hugout and		problem
			Ernst		solving,
			equation		homework
Twelfth	3	Exam and review	Exam and	Theoretical	Theoretica
			discuss the		discussion
			results		problem
					solving,
					homework
Thirteenth	3	knowledge and	permeability	Theoretical	Theoretica
		understanding			discussion
					problem
					solving,
					homework
Fourteenth	3	Design and cognitive		Theoretical	Theoretica
		considerations	of stratified		discussion
			soils		problem
					solving,
					homework
Fifteenth	3	Exam and general review	Exam and	Theoretical	Theoretica
			discussion of		discussion
			results		problem
					solving,
					homework

13- Infrastructure:			
Required readings:	-Irrigation	and	drainage
☐ Course books	engineering		
□ Other	- drainage eng	gineering	

Special requirements	nothing
Social services (including, for	nothing
example, guest lectures, vocational	
training, and field studies)	

12- Acceptance:	
Prerequisites	40 students

The smallest number of students	10
The largest number of students	40

Sanitary engineering

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE3309 Sanitary engineering	3. Course name/code
Engineering	4. The programs he participates in
In class room	5. Available forms of
)theoretical(attendance
First semester	6. Semester/year
45 hours distributed as follows: 3 hours per	7. Number of study hours
week	(total)
7.77-7.71	8. Date this description was
	prepared

Course objectives:

- 1. To know the basics, importance, and methods of water supply.
 2. To study the various sources and properties of water.
 - 3. To understand the various methods of conveyance of water.
- 4. To learn the objectives and methods of water treatment and to study the features and function of different water treatment units.
 - 5.To study the various sources and characteristics of water. 6.To qualify water demand and population forecasting.
 - 7.To understand the properties and the design criteria of the conventional water treatment plant (WTP).

A. Teaching and learning methods

\. Theoretical + applied lectures + electronic lectures recorded using Google Classroom with White Board in an interactive manner.

B.Evaluation methods

Short exams	١
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	٥
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development).(. Ability to deal with work environment problems
- Y. Correct investigation of problems and the ability to find solutions to them
- ۳. Evaluate, use and improve work mechanisms
- ٤. Determine appropriate work standards
- .°Developing the spirit of cooperation and teamwork as one team

11..Course structure

Evaluation Method	Teaching method			Hours	week
Short exam + assignments + attendance and participation	Lectures	Introduction of Sanitary Engineering		3	١
Short exam + assignments + attendance and participation	Lectures	Basics of Sanitary and Environmental Engineering		3	۲
Short exam + assignments + attendance and participation	Lectures	Sources of water, the amount of water and sewage		3	٣
Short exam + assignments + attendance and participation	Lectures	Water collection		3	٤
Short exam + assignments + attendance and participation	Lectures	Surface water, quality of water, drinking water standards		3	0
Short exam + assignments + attendance and participation	Lectures	Water consumption		3	٦
Short exam + assignments + attendance and participation	Lectures	Pumping design		3	٧
Short exam + assignments + attendance and participation	Lectures	Water treatment(coagulati on)		3	٨
Short exam + assignments + attendance and participation	Lectures	Water treatment (flocculation)		3	٩
Short exam + assignments + attendance and participation	Lectures	Water treatment (sedimentation)		3	1.
Short exam + assignments + attendance and participation	Lectures	Water treatment (sedimentation)		3	11
Short exam + assignments + attendance and participation	Lectures	Water treatment(filtration)		3	١٢

Short exam + assignments + attendance and participation	Lectures	Water treatment(disinfecti on)	3	١٣
Short exam + assignments + attendance and participation	Lectures	Water distribution	3	١٤
Short exam + assignments + attendance and participation	Lectures	Introduction to Advanced Treatments	3	10

\2.Infrastructure					
	Reference name	Author Name	Required readings: Course books		
	WATER SUPPLY AND SEWERAGE,, FIFTH Edition	E.W.STEEL & TERENCE J .MCGHEE	Other		
			Special requirements		
			Social services (including, for example, guest lectures, vocational training, and field studies(

\3.Acceptance			
	Prerequisites		
	The smallest number of students		
	The largest number		

Irrigation Engineering

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

•
ours
n was
0

Course objectives:

- 1. To know the basics, importance, and methods of Irrigation Engineering.
- 2. To study of water consumption of crops.
- 3. To understand the relationship between soil, water and crops.
- 4. To learn the objectives and methods of Irrigation Engineering.
 - 5.To study the Irrigation Efficiencies.

- 6. Study the irrigation structures.
- 7.To understand the water infiltration in the soil.
- 9 .Learning outcomes and methods of teaching, learning and evaluation
 - A. Teaching and learning methods

-	-				
	Le	ct	11	r	26

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	١
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	٥
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development).
- 1. Ability to deal with work environment problems
- Y. Correct investigation of problems and the ability to find solutions to them
- *****. Evaluate, use, and improve work mechanisms
- 4. Determine appropriate work standards
 - 5. Developing the spirit of cooperation and teamwork as one team

10.Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures	Introduction of Irrigation Engineering		3	١
Short exam + assignments + attendance and participation	Lectures	Estimation consumption use		3	۲
Short exam + assignments + attendance and participation	Lectures	Basic factors for irrigation design		3	٣
Short exam + assignments + attendance and participation	Lectures	Soil water		3	٤
Short exam + assignments + attendance and participation	Short exam + assignments + attendance and Lectures Irrigation Efficiencies			3	٥
Short exam + assignments + attendance and participation	assignments + attendance and			3	٦
Short exam + assignments + attendance and participation	Short exam + Lectures Continuous discharge assignments + attendance and			3	٧
Short exam + assignments + attendance and participation	Lectures	Intermittent discharge		3	٨
Short exam + assignments + attendance and participation	gnments + ndance and			3	٩
Short exam + assignments + attendance and participation	Lectures	Irrigation Canal		3	١.
Short exam + assignments + attendance and participation	signments + endance and			3	11
Short exam + assignments + attendance and participation	m + Lectures Irrigation structures tts + e and			3	١٢

Short exam + assignments + attendance and participation	Lectures	Siphon design	3	١٣
Short exam + assignments + attendance and participation	Lectures	Canal fall Introduction.	3	١٤
Short exam + assignments + attendance and participation	Lectures	Type of canal fall	3	10

		١٥ البنية التحتية
اسم المرجع IRRIGATION ANI DRAINAGE ENGINEERING	اسم المؤلف Mohammed al sallawe & Amer mohammed	القراءات المطلوبة: - كتب المقرر - اخرى متطلبات خاصة
		الخدمات الاجتماعية (وتشمل على سبيل المثال محاضرات الضيوف والتدريب المهني والدراسات الميدانية)

12.Acceptance	
	Prerequisites
	The smallest number of students
	The largest number of students

Environmental Engineering

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Anbar University	1. Educational institution
Dam and water resources engineering	2. University department/center
DWE3308 Environmental Engineering	3. Course name/code
Engineering	4. The programs he participates in
electronic	5. Available forms of attendance
(theoretical)	6. Semester/year
Second semester 2021-2022	7. Number of study hours (total)
45 hours distributed as follows: 3 hours per	8. Date this description was
week	prepared

Course objectives:

- 1.Identify the quantity, quality, types and characterization of wastewater generated
- 2.To understand the properties and the design criteria of the conventional wastewater treatment plant (WWTP).
- 3. To learn the objectives and methods of sewage treatment and to study the features and function of different primary treatment units.
- 4. To study the features and function of different secondary treatment units.
- 5. To learn the objectives and methods of sewage disposal.
- 6. To learn the objectives and methods of sludge treatment.
- 9 .Learning outcomes and methods of teaching, learning and evaluation
- A. Teaching and learning methods

\. Lectures

Theoretical + applied + electronic lectures recorded using Google Classroom with White Board in an interactive manner

B. Evaluation methods

Short exams	١
Homework	۲
Activity + attendance	٣
Monthly exams	٤
Oral exam	٥
final exam	٦

C- Thinking skills

The ability to interact with sources and references
Ability to recognize engineering problems
The ability to correctly evaluate
Ability to make suggestions and solve problems
The ability to conclude and compare

- D General and transferable skills (other skills related to employability and personal development.(
- \. Ability to deal with work environment problems
- $^{\gamma}$. Correct investigation of problems and the ability to find solutions to them
- ۳. Evaluate, use, and improve work mechanisms
- ξ . Determine appropriate work standards
- 5 .Developing the spirit of cooperation and teamwork as one team

Course structure

Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	Week
Short exam + assignments + attendance and participation	Lectures	Wastewater treatment objective		3	1
Short exam + assignments + attendance and participation	Lectures	Sanitary sewage flow estimation		3	۲
Short exam + assignments + attendance and participation	Lectures	Characteristics and composition of sewage		3	٣
Short exam + assignments + attendance and participation	Lectures	Sewerage system		3	٤
Short exam + assignments + attendance and participation	Lectures	Types and method of wastewater treatment		3	0
Short exam + assignments + attendance and participation	Lectures	Primary treatment		3	٦
Short exam + assignments + attendance and participation	Lectures	Screens		3	٧
Short exam + assignments + attendance and participation	Lectures	Grit chamber		3	٨
Short exam + assignments + attendance and participation	Lectures	Primary sedimentation tanks		3	٩
Short exam + assignments + attendance and participation	Lectures	Secondary Treatment of Sewage		3	١.
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	11
Short exam + assignments + attendance and participation	Lectures	Biological treatment (activated sludge)		3	١٢

Short exam + assignments + attendance and participation	Lectures	Trickling filter	3	١٣
Short exam + assignments + attendance and participation	Lectures	Sludge treatment	3	١٤
Short exam + assignments + attendance and participation	Lectures	Advanced treatment	3	10

11 .Infrastructure		
Reference name WATER SUPPLY AND SEWERAGE,, FIFTH Edition	Author name E.W.STEEL & TERENCE J .MCGHEE	Required readings:
		Special requirements
		Social services (including, for example, guest lectures, vocational training, and field studies(
12.Acceptance		
		Prerequisites
		The smallest number of students
		The largest number of students

Groundwater Hydrology

Groundwater Hydrology

It is a branch of water resources topics that is concerned with the study and analysis of groundwater, groundwater reservoirs, wells, the method of recharging groundwater, and others.

The study of this subject aims to teach and train the student the basics of this specialty and the principles of analysis and design, which he needs for his subsequent studies.

University of Anbar	١ ـ المؤسسة التعليمية
Dams and Water Resources Engineering Dep.	٢ - القسم الجامعي / المركز
DWE3305	٣- اسم / رمز المقرر
Bachelor's	٤ - البرامج التي يدخل فيها
Attendance	٥ - أشكال الحضور المتاحة
First semester/ 2022-2023	٦_ الفصل / السنة
٤٥	٧- عدد الساعات الدراسية (الكلي)
18/9/2021	٨- تاريخ إعداد هذا الوصف

٩ - أهداف المقرر:

It is concerned with teaching students the basic principles of analyzing and studying groundwater hydrology (flow - wells - recharging - statistical analysis... etc.) with the aim of estimating the amount of available water and planning methods of extraction and treatment or preserving and operating it, addressing issues related to the water budget and developing methods of hydrological calculation and

accuracy. Determine water discharges, predict future water discharges, and determine the size of reservoirs.

١٠ م مخرجات التعلم وطرائق التعليم والتعلم والتقييم:

أولا: الأهداف المعرفية:

The student must be able to:

- 5. Preparing and analyzing hydrological data for groundwater and using them to solve applied problems.
- 6. Water budget calculation
- 7. Researching the types of wells and methods of water extraction
- 8. Analysis of hydrological prediction of drainage and water levels

ثانيا: الأهداف المهاراتية الخاصة بالمقرر:

- 1- Think geometrically to estimate and calculate water resources.
- 2- Explains processes such as shedding, seepage, and seepage and their interactions.
- 3- It works to solve problems such as drought and a strategy to prevent it or extract groundwater in an economical way.
- 4- He uses his practical experience, if any, in comparison with the theoretical results of analysis, design and creation the solution

أ- طرائق التعليم والتعلم:

- 10- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 11- Solving a group of practical and applied examples by the subject teacher.
- 12- Through discussion, students participate in solving some practical problems.
- 13- Daily surprise and continuous weekly tests.

Directing students to some websites to benefit from them.

ب- طرائق التقييم:

- 10- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 11-Evaluating students collectively through daily exams with practical and theoretical questions.
- 12- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.

13- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.

Final exams for the first and second round.

ج- مهارات التفكير:

- 6- \ Knowing and studying how to analyze the factors affecting surface runoff and transforming them into design principles and linking them to reality to direct the student's thought towards practical life.
- 7-Analyzing the results of solving problems and comparing them mentally with reality and the extent of their conformity with the actual design values.

Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

د- طرائق التعليم والتعلم:

- 11- Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 12- Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 13- Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 14- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 15- Providing students with practical skills by linking their studies to practical reality.

```
ه- طرائق التقييم:
```

```
يتم التقييم على أساس:

- Monthly exams ٪۲۰:

- TDaily exams ٪۱۰:

- THomeWorks

- Attendance

- Final exams% ۲۰:
```

و - المهارات العامة والمنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي):

- 9-Enabling students to master the subject in its applied and cognitive aspects.
- 10- Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.

- 11- Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.
- 12- Enabling the student to conduct a field survey to identify the problems facing the engineer in the field

١١- بنية المقرر:

Evaluation method	Teachi ng metho d	unit/course or subject	learning outcomes	Hours	Week
Discussion, quick exam, problem solving, homework	Theory	Introduction	General Introduction	٣	First
Discussion, quick exam, problem solving, homework	Theory	Classification and types of groundwater -Basic definitions: (aquifers, Aquitard, Aquiclude, AquifugeUnsaturated zone and saturated zone.)	Learn Hydrology properties	٣	Second
Discussion, quick exam, problem solving, homework	Theory	-Hydrologic budget and groundwater sources.-Concepts of groundwater pollution	Learn Water Balance	٣	Third
Discussion, quick exam, problem solving, homework	Theory	Aquifers -Aquifers classification: (confined, unconfined and leaky)	Learn Aquifers	٣	Fourth
Discussion, quick exam, problem solving, homework	Theory	Aquifer Parameters: (porosity, recharge and discharge, hydraulic conuctivity, transmissivity, storativity, specific yield) - Anisotropy and heterogeneity	Aquifers propeties	٣	Fifth
Discussion, quick exam, problem solving, homework	Theory	Groundwater flow - Steady state and unsteady state flow	Groundwater movment	٣	Sixth
Discussion, quick exam, problem solving, homework	Theory	Mid-term Exam	Exam	٣	Seventh
Discussion, quick exam, problem solving, homework	Theory	-Driving forces of groundwater flow principles laws of groundwater flow (Darcy's law)	Learn Darcy's law	٣	Eighth
Discussion, quick exam, problem solving, homework	Theory	Groundwater Resources Development -Exploration -Evaluation -Exploitation	Groundwater dorces	٣	Ninth
Discussion, quick exam, problem solving, homework	Theory	Wells -Well Drilling Methods: - Methods of Drilling Shallow Wells:	Wells	٣	Tenth
Discussion, quick exam, problem solving, homework	Theory	Well Completion -Placement of casing -Cementing of casing -Placement of well screen	Well's types	٣	Eleventh
Discussion, quick exam, problem solving, homewor	Theory	Requirements for Water Well Design -Limitations of dimensions and diameters of casing piping	Wells requirements	٣	Twelfth

		-Intake area: design of well screen, gravel pack design.			
Discussion, quick exam, problem solving, homework	Theory	Groundwater & Pumping Tests -Steady State Radial Flow to Wells:	Pumps	٣	Thirteenth
Discussion, quick exam, problem solving, homework	Theory	-Unsteady State Radial Flow: Theis's Method and its application, Jacob's Methods	Unsteady flow	٣	Fourteenth
Discussion, quick exam, problem solving, homework	Theory	-Discharge calculation from early drawdown data (Sen 1986)Leaky Aquifers	Discharge measurement	٣	Fifteenth
2nd Course Exam				٣	Sixteenth

القبول: 12		
Fluid mechanics, open channel and Statistical	Prerequisites	
1.	The smallest number of students	
٥,	The largest number of students	

ـ البنية التحتية: 13			
 6- Foundation Design - Principles and Practice, Third Edition, by Donald P. Coduto, 2014, Pearson Education, Inc. 7- Ground water hydrology 	Required readings: ② Course books ② Other		
Nothing	Special requirements		
Nothing	Social services (including, for example, guest lectures, vocational training, and field studies)		

Engineering Hydrology

Engineering Hydrology

It is a branch of water resources topics that is concerned with the study and analysis of surface water, parts of the hydrological cycle, and others.

The study of this subject aims to teach and train the student the basics of this specialty and the principles of analysis and design, which he needs for his subsequent studies.

University of Anbar	١ ـ المؤسسة التعليمية
Dams and Water Resources Engineering Dep.	٢ ـ القسم الجامعي / المركز
DWEŁT.Y	٣- اسم / رمز المقرر
Bachelor's	٤ - البرامج التي يدخل فيها
Attendance	٥ - أشكال الحضور المتاحة
First semester/ 2022-2023	٦_ الفصل / السنة
٤٥	٧- عدد الساعات الدراسية (الكلي)
18/9/2021	٨- تاريخ إعداد هذا الوصف

٩- أهداف المقرر:

It is concerned with teaching students the basic principles of analyzing and studying the stages of the water cycle in nature (precipitation - flow - evaporation - storage) with the aim of estimating the amount of available water and planning and operating water facilities. Addressing issues related to the water budget, developing hydrological calculation methods, accurately determining water discharges, forecasting future water discharges, and determining the size of reservoirs to meet needs. Drinking, irrigation and drying time.

• ١ - مخرجات التعلم وطرائق التعليم والتعلم والتقييم:

أولا: الأهداف المعرفية:

The student must be able to:

- 5. Preparing and analyzing hydrological data and using them to solve applied problems.
- 6. Water budget calculation
- 7. Researching the forms of flow
- 8. Analysis of hydrological prediction of drainage and water levels

ثانيا: الأهداف المهاراتية الخاصة بالمقرر:

- 1- Think geometrically to estimate and calculate water resources .
- 2- Explains processes such as precipitation, runoff, and total evaporation and their interactions.
- 3- It works on solving problems such as flood and drought and strategies to prevent them.
- 4- He uses his practical experience, if any, in comparison with the theoretical results of analysis, design and creation the solution

أ- طرائق التعليم والتعلم:

- 14- Providing students with the basics and topics related to previous educational outcomes and the skills to solve practical problems through presentation, lecture, or conducting experiments.
- 15- Solving a group of practical and applied examples by the subject teacher.
- 16- Through discussion, students participate in solving some practical problems.
- 17- Daily surprise and continuous weekly tests.
- 18-Directing students to some websites to benefit from them.

ب- طرائق التقييم:

- 14- Evaluating students individually by giving them an opportunity to participate in the class by answering questions.
- 15-Evaluating students collectively through daily exams with practical and theoretical questions.
- 16- Evaluating students collectively by giving extracurricular assignments, such as writing reports or doing assignments.
- 17- Permanent monthly exams for students to evaluate their general performance and understanding of the subject.
- 18- Final exams for the first and second round.

ج_ مهارات التفكير:

- 8-Knowing and studying how to analyze the factors affecting surface runoff and transforming them into design principles and linking them to reality to direct the student's thought towards practical life.
- 9-Analyzing the results of solving problems and comparing them mentally with reality and the extent of their conformity with the actual design values.
- 10- Analyzing the results obtained by the student by conducting practical reports and determining the extent of their reality.

د- طرائق التعليم والتعلم:

- 16- Using modern means to present the scientific and theoretical aspect, such as Data Show devices, to attract attention and attract students so that the idea reaches the student better.
- 17- Giving students extra-curricular assignments that require them to exert skills and self-explanations in experimental ways.
- 18- Interrogating students through discussion sessions by asking intellectual questions such as: (how, why, when, where, which) for specific topics.
- 19- Using the method of brainstorming and mental nutrition in order to activate the accumulated experiences of students by linking the subjects taken in the pre-university educational levels and linking them to the new ones.
- 20- Providing students with practical skills by linking their studies to practical reality.

ه- طرائق التقييم:

و - المهارات العامة والمنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي):

- 13- Enabling students to master the subject in its applied and cognitive aspects.
- 14- Developing the student's ability to analyze information and interpret the data he obtained by linking the topic he learned with practical reality.
- 15- Enabling the student to use the specific and general equations of the subject and how to benefit from them in analyzing issues and extracting results accurately.
- 16- Enabling the student to conduct a field survey to identify the problems facing the engineer in the field.

١١- بنية المقرر:

Evaluation method	Teaching method	unit/course or subject	learning outcomes	Hours	Week
Discussion, quick exam, problem solving, homework	Theory	Introduction	General Introduction	٣	First
Discussion, quick exam, problem solving, homework	Theory	Hydrologic cycle, return periods and water balance	Learn Hydrology properties	٣	Second
Discussion, quick exam, problem solving, homework	Theory	Precipitation, types of precipitation and stream flow measurements	Learn Hydrology properties	٣	Third
Discussion, quick exam, problem solving, homework	Theory	Estimation of missed data, checking data consistency & Rainfall frequency analysis	Data Analysis	٣	Fourth
Discussion, quick exam, problem solving, homework	Theory	Theory of frequency analysis for design storms and design floods	Analysis and Design	٣	Fifth
Discussion, quick exam, problem solving, homework	Theory	Measurement of evaporation and estimation of potential evaporation	Analysis and Design	٣	Sixth
Discussion, quick exam, problem solving, homework	Theory	Mid-term Exam	Exam	٣	Seventh
Discussion, quick exam, problem solving, homework	Theory	Infiltration, Factors affecting infiltration, Measurement and estimation of infiltration process	Properties measurements	٣	Eighth
Discussion, quick exam, problem solving, homework	Theory	Hydrographs, Introduction and Unit Hydrographs	Properties measurements	٣	Ninth
Discussion, quick exam, problem solving, homework	Theory	Hydrograph application, Time Area Models and Synthetic Unit Hydrographs	Hydrology Application	٣	Tenth
Discussion, quick exam, problem solving, homework	Theory	Channel Intake and Flood routing: channel & reservoir routing	Analysis and Design	٣	Eleventh
Discussion, quick exam, problem solving, homewor	Theory	Introduction to groundwater and Movement of ground water and Transmissibility	General Introduction	٣	Twelfth
Discussion, quick exam, problem solving, homework	Theory	Applications of binominal distribution for defining the return period in engineering design	Hydrology application	٣	Thirteenth

Discussion, quick exam, problem solving, homework	Theory	Normal distribution and its application and relationship to hydraulic designs	Statistical application	٣	Fourteenth
Discussion, quick exam, problem solving, homework	Theory	Statistical distributions and their applications in flood analysis	Statistical application	٣	Fifteenth
2nd Course Exam			٣	Sixteenth	

١٣ - القبول:		
Fluid mechanics, open channel and Statistical	Prerequisites	
1.	The smallest number of students	
٥,	The largest number of students	

٢ ١ - البنية التحتية :			
 8- Warren vissman , Introduction to hydrology, 5th ed, 2003. 9- Ven Te Chow, Applied hydrology. 10- Em. Wilson, Engineering hydrology. 	Required readings: 2 Course books 2 Other		
Nothing	Special requirements		
Nothing	Social services (including, for example, guest lectures, vocational training, and field studies)		